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Abstract

We document strong U.S. stock and bond return predictability from several macroe-

conomic volatility series before 1982, and a significant decline in this predictability

during the Great Moderation. These findings are robust to alternative empirical spec-

ifications and out-of-sample tests. We explore the predictability decline using a model

that incorporates monetary policy and shocks with time-varying volatility. The decline

is consistent with changes in both policy and shock dynamics. While an increase in the

response to inflation in the interest-rate policy rule decreases volatility, more persistent

and less volatile shocks explain the lower predictability.
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1 Introduction

A large number of financial and macroeconomic variables have economically and statis-

tically significant power to forecast stock and bond returns in predictive regressions.1 The

strength of the regression results, however, tends to depend on the sample period, which

raises questions on both the robustness and the economic drivers of this predictability.

In some equilibrium models, asset return predictability naturally arises from time-varying

macroeconomic volatility that generates time-varying expected excess returns.2 For in-

stance, expected excess returns on financial assets in consumption-based asset pricing

models depend on the volatility of consumption growth. Changes in this volatility are

reflected in changes in compensation for risk in financial assets and, as a result, factors

driving consumption growth volatility have predictive power for asset returns. It follows

that the widely documented structural decline in the volatility of several macroeconomic

variables around the early 1980s, often called the Great Moderation, may have affected

the predictability of asset returns. More interestingly, the nature of these changes in pre-

dictability can shed additional light into the economic drivers of the volatility decline. In

this paper, we study whether the observed reduction in macroeconomic volatility was ac-

companied by changes in asset return predictability, and use an economic model to explore

whether changes in monetary policy or shock dynamics can explain the empirical findings.

In our empirical analysis, we verify the existence of a structural break in the volatility of

several macroeconomic series during the first half of the 1980s. We find that the structural

break does not only apply to the unconditional means of the volatility series, as found in

1See Fama and French (1988), Campbell and Shiller (1988b,a), Cochrane (1992), Lewellen (2004),
Cochrane (2011), and Shiller (2014), among others.

2Alternatively, return predictability also can be obtained in models with time-varying prices of risk,
such as in Campbell and Cochrane (1999). The focus of this paper, however, is the channel of time-varying
macroeconomic volatility for predictability.
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previous studies, but also to the volatility of these series. We then compare statistics from

predictive regressions of stock and bond returns on well-known predictors and macroeco-

nomic volatility, and find a significant decline in the predictive power of these variables.

Based on these empirical findings, we develop an equilibrium model to learn whether the

joint changes in macroeconomic volatility and asset return predictability can be explained

by changes in an interest-rate policy rule, changes in the dynamics of fundamental shocks,

or both. We find that an increase in the response to inflation in the policy rule can explain

the decline in macroeconomic volatility; however, it cannot explain the reduction in re-

turn predictability, which is consistent with more persistent cost-push shocks with reduced

variation in their volatility.3

We conduct a battery of predictability analyses, including out-of-sample tests, for both

stock and bond returns using post-war data and two associated subsample periods. Using

data for the 1961-2008 period, we find strong evidence of a structural break in macroeco-

nomic volatility between 1980 and 1984, consistent with the Stock and Watson (2003) of the

Great Moderation.4 We split the full sample into two subsamples using 1982 as the break-

point. The predictors are standard financial variables and several macroeconomic volatility

series. The volatility series are constructed for consumption growth, inflation, the output

gap, and the nominal short rate using transformations of residuals from a 10-variable VAR.

We document two main empirical findings. First, the macroeconomic volatility se-

3Cost-push shocks, widely studied in the macroeconomic literature, are shocks such as unexpected
fluctuations in market power in product markets, exchange rates, or government regulation and taxation
which may translate into changes in product prices. A common example of supply shocks is oil price shocks,
given their widespread effect in the cost of production factors.

4Building on their conclusion that the structural break stems from the change in conditional volatilities
rather than in conditional means, we apply a time-varying autoregressive model to the volatility series of
10 macroeconomic variables to test for potential breaks in both conditional means and volatilities of these
series. The evidence points to a structural break in macroeconomic volatility more likely resulting from a
change in the conditional volatility of volatility (vol-of-vol) than from a change in the conditional mean of
volatility. Model-free tests of the volatility series also exhibit breaks around the same period.
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ries, particularly those constructed from consumption growth and inflation, exhibit strong

predictive power in explaining future stock and bond returns in the early subsample be-

fore 1982. In univariate regressions where future returns are regressed on current realized

volatility, stock return predictability can be shown to achieve at least 10% R2 with statis-

tically significant coefficient loading at the 5% level around the 10-quarter holding period

horizon and beyond; while bond return predictability can achieve those thresholds at the

4-quarter holding period horizon and beyond. The maximal R2 across holding period

horizons is 40% for stock returns, and roughly 60% for bond returns. The statistical signif-

icance on the estimated volatility coefficients survive when known stock and bond return

predictors are also included, as well as when the standard errors of the estimated volatility

coefficients are bootstrapped.

Second, return predictability for both equity and bonds declined significantly in the

1982-2008 sample period, after the structural break in macroeconomic volatility. When

standard financial predictors are used, the maximal R2 of equity return predictive regres-

sions across prediction horizons dramatically decline in the late sample period (post-1982)

with loadings turning from highly significant to insignificant. When macroeconomic volatil-

ities are used as predictors, the maximal R2 of equity return predictive regressions across

prediction horizons drops from close to 40% in the early sample to less than 8% in the late

sample. Bond return predictability shows a similar decline, from 60% to 25%. Statistical

in- and out-of-sample tests imply larger residuals for the predictive regressions in the late

sample than in the early sample.

We develop and calibrate an equilibrium asset pricing model for stocks and nominal

bonds to learn about potential economic drivers of the documented decline in asset return

predictability. The model builds on the long-run risk framework of Bansal and Yaron (2004)

and extends it by adding a monetary policy interest-rate rule, a link between inflation and
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the real economy, and multiple sources of shocks with time-varying volatility. As a result,

consumption growth and inflation endogenously depend on the policy rule and exhibit time-

varying volatility. This allows us to conduct experiments involving changes in policy and

shock parameters to learn whether they can explain a decline in asset return predictability.

The model is calibrated to match the return predictability and selected macroeconomic

moments for the 1961-1976 period. Based on this calibration, policy and shock parameters

are changed in the experiments to match the same moments for the 1982-2008 period.

Consistent with the literature, an increase in the response to inflation in the policy rule

decreases macroeconomic volatility. However, this increase does not produce a significant

decline in asset return predictability, and points to simultaneous changes in shock dynamics

to explain this decline. Among the three analyzed shocks, i.e, shocks to the natural rate of

consumption growth, monetary policy shocks, and cost-push shocks, only a change in the

dynamics of cost-push shocks results in reduced asset return predictability.

More persistent cost-push shocks with lower variation in volatility reduce the power of

macroeconomic volatility to predict asset returns. Increased persistence in cost-push shocks

amplifies the response of consumption growth, inflation, and their volatilities to these

shocks. On the other hand, reduced variation in the volatility of cost-push shocks decreases

the response of these variables to volatility shocks. As a result, asset returns become more

sensitive to cost-push shocks and less sensitive to volatility shocks, respectively. This

translates into a lower covariance between future asset returns and current macroeconomic

volatility, decreasing the return predictive ability of this volatility. Empirically, we find

that cost-push shocks during the 1982-2008 period are more persistent and less volatile,

providing support to this channel for the predictability decline.

This paper is related to the literature on asset return predictability, macroeconomic

4



volatility, and asset pricing with monetary policy. Koijen and Nieuwerburgh (2011) provide

an extensive review of the return predictability literature. They summarize evidence not

only on the predictive power of both financial and macroeconomic variables, but also on

the instability of this power across sample periods. Schwert (1990), Lettau and Ludvigson

(2001), Cooper and Priestley (2009), and Chava, Gallmeyer and Park (2015) show that

variables such as the short-term interest rate, the consumption-wealth ratio, the output

gap, and credit conditions, respectively, have significant predictive ability for asset returns.

The unstable nature of this ability is highlighted by Ang and Bekaert (2007), Goyal and

Welch (2003), Goyal and Welch (2008), and Lettau and van Nieuwerburgh (2008), among

others. We show that several series of macroeconomic volatility predict bond and stock

returns, but the significance of this predictability declined after the early 1980s.

Time-varying volatility in macroeconomic variables has been studied at least since the

work of Engle (1982) on inflation. Both low- and high-frequency variations in macroeco-

nomic volatility have been found in the data. Bloom (2009) highlights the importance of

time variation in volatility to understand economic dynamics. In the asset pricing con-

text, Bansal, Khatchatrian and Yaron (2005), Boguth and Kuehn (2013), Bansal, Kiku,

Shaliastovich and Yaron (2014), and Tdongap (2015) find that the conditional volatility of

consumption growth covaries with aggregate and cross-sectional stock returns, while Bansal

and Shaliastovich (2012) provide similar findings for bond returns. Importantly, Kim and

Nelson (1999), Perez-Quiros and McConnell (2000), and Stock and Watson (2003) find a

structural decline in the early 1980s of the mean in the conditional volatility of a wide

range of macroeconomic variables, labeled as the Great Moderation. Lettau, Ludvigson

and Wachter (2008) use the decline in consumption volatility to explain a reduction in the

equity premium. We complement the study of macroeconomic volatility by showing that

the Great Moderation and lower expected asset returns were accompanied by a decline
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in the volatility of the conditional volatility of several macroeconomic variables, and by a

significant reduction in the ability of this conditional volatility to predict asset returns.

Different explanations have been explored for the Great Moderation that include changes

in monetary policy and reduced volatility in fundamental shocks. Most of this litera-

ture, however, focuses on macroeconomic dynamics with no clear implications for asset re-

turns. Empirical studies such as Thorbecke (1997), Patelis (1997), Ehrmann and Fratzscher

(2004), Bernanke and Kuttner (2005), and Chava and Hsu (2015) find a significant link

between monetary policy and stock returns. However, they do not explore changes in this

link over time. Palomino (2012), and Campbell, Pflueger and Viceira (2016) use New Key-

nesian models to understand how changes in policy credibility and a policy interest-rate

rule, respectively, affect bond returns. Song (2016) explores the effect of monetary policy

regimes on bond risk premia. We add to this literature by exploring a quantitative model

with stochastic volatility in several shocks where a monetary policy rule affects bond and

stock valuations. We use this model to analyze the effects on return predictability and

macroeconomic variables of changes in the policy rule and shock volatility dynamics. This

analysis provides additional asset return restrictions to identify the drivers of the Great

Moderation.

2 Return Predictability and Macroeconomic Volatility

This section documents the power of different U.S. macroeconomic volatility series to

predict aggregate stock and bond returns before 1980, which considerably declined during

the Great Moderation. We first describe the construction of the macroeconomic volatility

series, followed by an analysis of asset return predictability regressions using the obtained

volatility series as predictors. To test for changes in this predictability over time, the anal-
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ysis relies on structural break tests. Consistent with previous findings, there is a significant

reduction in average macroeconomic volatility around the early 1980s. More importantly,

this reduction was accompanied by a similar decline in the volatility of macroeconomic

volatility (vol-of-vol), as well as in the ability of these series to predict asset returns. For

robustness, we perform out-of-sample forecasts with “real time” estimation of macroeco-

nomic volatility.

2.1 Data

We use quarterly data of U.S. macroeconomic and financial variables from 1961 to

2008. All macroeconomic series (described below) are from the FRED Economic database.

All variables are real, deflated by the implicit GDP deflator, except for inflation and the

nominal short rate. The output gap is defined as the HP-filtered deviation of output

from a trend, at quarterly frequency. Government spending is Federal defense investment

plus Federal non-defense investment plus state and local investment plus state and local

consumption. Government revenue is Federal receipts plus state and local receipts minus

net transfer minus net interest.5 Stock return and dividend data are for the market portfolio

from the Center for Research in Security Prices (CRSP).6 Nominal bond yields, available

at the Board of Governors of the Federal Reserve System website, are zero coupon yields

following the procedure in Gurkaynak, Sack and Wright (2006).7

5U.S. Bureau of Labor Statistics, Nonfarm Business Sector: Real Output [OUTNFB], Federal Gov-
ernment: Current Expenditures [FGEXPND], and Government Current Receipts [FGRECPT], retrieved
from FRED, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/series/, accessed March,
2017.

6Center for Research in Security Prices (CRSP), CRSP 1925 US Stock Database, Wharton Research
Data Services (WRDS), wrds-web.wharton.upenn.edu/wrds/about/databaselist.cfm, accessed March,
2017.

7Board of Governors of the Federal Reserve System, https://www.federalreserve.gov/econresdata/
researchdata/feds200628.xls, accessed March, 2017.
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To motivate the subsample analysis, Table 1 presents summary statistics for different

variables and sample periods. The variables are consumption growth, inflation, the nominal

short-term interest rate, the output gap, aggregate dividend growth, and stock and bond

returns. The sample periods are 1961QIII to 2008QIII (full sample) in Panel A, 1961QIII

to 1976QIV (early sample) in Panel B, and 1982QI to 2008QIII (late sample) in Panel

C. The selection of the early and late sample periods is described in section 2.3. Several

well-documented changes in the properties of U.S. macroeconomic and financial variables

are summarized in the table. In the late sample, the volatilities of consumption growth,

inflation, and the output gap are lower, the volatility of the nominal short-term rate is

higher, and the autocorrelations of inflation and the nominal short-term rate are lower and

higher, respectively. In addition, there is a striking increase in the average excess returns

of both stocks and bonds going from the early to the late samples: average stock returns

increased from 1.64% to 2.83% per quarter, and average 5-year bond returns increased

from 1.27% to 2.31%. With respect to joint dynamics, the correlation between consump-

tion growth and inflation changed from strongly negative, −0.41%, to weakly negative,

−0.08%, while the correlation between consumption growth and the nominal short-term

rate switched from negative, −0.34%, to positive, 0.28%. Finally, the correlation between

consumption growth and the excess return on the 5-year bond turned negative, −0.14%,

in the second sample. This evidence is complemented with a joint econometric analysis of

macroeconomic volatility and return predictability over time.

2.2 Macroeconomic Volatility

We use a vector autoregressive (VAR) approach to construct macroeconomic volatility

series for the analysis of return predictability. We employ a 10-element VAR where the

variables are output growth, consumption growth, hours growth, wage growth, investment

8



growth, government spending growth, government revenue growth, inflation, output gap,

and the effective Federal Funds rate. Specifically, the VAR is



∆ln(Output)

∆ln(Consumption)

∆ln(Hours)

∆ln(Wage)

∆ln(Investment)

∆ln(Spending)

∆ln(Revenue)

Inflation

OutputGap

FedFundsRate


t

= α+B(L)



∆ln(Output)

∆ln(Consumption)

∆ln(Hours)

∆ln(Wage)

∆ln(Investment)

∆ln(Spending)

∆ln(Revenue)

Inflation

OutputGap

FedFundsRate


t−1

+ εt,

where B(L) is the transition matrix with lags, and εt are the residuals that are transformed

into volatilities. The volatility construction depends then on two subjective inputs: the

number of lags of the VAR to obtain residuals, and the specific transformation applied to

the residuals to obtain volatilities. We consider four different volatility transformations for

each macroeconomic variable: absolute and squared errors (directly computed using the

residuals), and GARCH absolute and squared errors. GARCH absolute and squared errors

are obtained by specifying volatility processes ν1,t and ν2,t, respectively, that follow

νk,t = αk +
R∑
r=1

βr,k|εt−r|k +
S∑
s=1

δs,kνk,t−s,

for k = {1, 2}, where R and S are maximal lags used in the estimation. We choose

R = S = 5 quarters. The estimation of these processes is performed using maximum
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likelihood assuming Gaussian distributed errors.

For our benchmark analysis, we jointly select the number of lags in the VAR and the

volatility transformation based on two exercises.8 First, we use daily data on the effective

Federal Funds interest rate to calculate interest rate volatility at quarterly frequency. This

volatility is compared with the volatility transformations for the same rate from VAR

specifications with different lags. Second, we run full sample predictive regressions for

stock and bond returns on each of the four volatility transformations for different number

of VAR lags to compare their predictive ability. We choose the number of VAR lags and the

volatility transformation that overall maximize the correlation of the implied interest-rate

volatility with that constructed from daily data in the first exercise, and the predictive

ability of the implied volatility for asset returns in the second exercise.

Table 2 summarizes the comparison of data (model-free) and VAR implied volatilities of

the nominal short-term interest rate for different VAR lags and volatility transformations.

Column (1) shows the correlations of these volatilities, and columns (2) and (3) show

the t-statistics and the R2s, respectively, of regressions of the model-free volatility on the

VAR-implied volatilities. In general, for all four volatility transformations, the correlations

between the two interest rate volatilities are decreasing in the number of lags specified

in the VAR. The same is true of the R2s of the univariate regressions. As the VAR

incorporates more lags, the resulting interest rate volatility has less explanatory power on

the model-free interest rate volatility series. Evidence from this exercise suggests that a

low-lag VAR structure is appropriate. Furthermore, for each of the VAR lag specifications,

it is almost always the case that the GARCH-ABS volatility series outperforms the other

three transformations.

8The VAR information criteria are ambiguous on which lag is appropriate, since AIC points to a
VAR(4) structure while BIC points to a VAR(2). We use alternative lags and volatility transformations for
comparison and robustness.
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Next, we turn to predictive regressions of stock and bond returns using the full sample.

The regression is

rkt→t+p = αkp + βkp,jSV
j
t + εkj,t+p, (1)

where rkt→t+p is the cumulative return from time t to time t+p of asset k = {stock, 5-year bond},

and SV j
t is one of the four volatility transformations for macroeconomic variable j ∈

{i, π, z,∆c}.9 We focus on the volatility of the short-term interest rate (i), inflation (π),

the output gap (z), and consumption growth (∆c). The first three variables are standard

inputs in interest-rate policy rules, and consumption growth is an important driver of the

stochastic discount factor in asset pricing models.

Figures 1 and 2 plot the R2s of the predictive regressions of stock and 5-year nominal

bond returns, respectively, under 12 different volatility constructions. In each figure, each of

the three columns refers to regressions that use macroeconomic volatilities generated from

residuals in VAR specifications with 1, 2, and 4 lags, respectively. Similarly, each of the

four rows refers to regressions using absolute error, squared error, GARCH absolute error,

and GARCH squared error, respectively, as volatility transformations. Three findings are

important to highlight from the figures. First, as the number of lags in the VAR increases,

the predictive power of i, π, z remains relatively stable for stock returns and decreases

for bond returns. Second, the predictive power of the volatility of consumption growth

for both stock and bond returns from a VAR(4) is higher than from a VAR(1). Finally,

GARCH estimated volatilities outperform absolute and squared error of the residuals in

predictive power.

Given the results from the two exercises above, we choose for the benchmark analysis a

VAR(4) to obtain residuals, and a GARCH absolute error transformation of these residuals

9The cumulative bond return is the accumulated one-quarter returns of a bond with an initial maturity
of 5 years each quarter.
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to construct macroeconomic volatilities.10 Table 3 reports coefficients on lagged variables

from the baseline VAR estimation. Figure 3 plots the obtained volatility series for con-

sumption growth, inflation, the output gap, and the Federal funds rate. All four series are

positively correlated, and increase during recessions, consistent with the evidence in the

literature.

2.3 Structural Break Tests of Macroeconomic Volatility

We use two structural break tests to detect cutoff time points for changes in macroeco-

nomic volatility dynamics. We apply these tests to the volatility series estimated in Section

2.2, and the volatility of these series (vol-of-vol). The tests are the heteroscedasticity-

robust Quandt (1960) likelihood ratio test (QLR) used by Stock and Watson (2003), and

the CUSUM test developed in Page (1954). The results of these analyses are used in Sec-

tion 2.4 to compare asset return predictability under different macroeconomic volatility

environments.

Stock and Watson (2003) estimate time-varying autoregressive models on 168 macroe-

conomic series to analyze potential changes in the conditional mean (autoregressive coef-

ficient) and/or the conditional variance in these models. They conclude that the Great

Moderation decline in volatility is characterized by a sharp reduction in the conditional

variance of GDP growth centered around 1982QIV to 1985QIII. We apply a similar pro-

cedure to find break points in the conditional mean and variance of the macroeconomic

volatility series from Section 2.2. Specifically, the steps are:

• We estimate the AR(1) model of each of the 10 volatility series (indexed by j) with

10A VAR(2) or a GARCH squared error transformation for volatilities does not significantly alter the
main empirical findings. The results of alternative specifications are available upon request.
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time-varying coefficients:

SV j
t = αjt + ρtSV

j
t−1 + νjt ,

where the conditional mean αt + ρtSV
j
t−1 has a potential break at t = κj , and the

conditional variance vart(ν
j
t+1) has a potential break at t = τj .

• We maximize the Chow test F statistic over the central 70% of the sample to find

the conditional mean break point κj .

• To find the break point of the conditional vol-of-vol, τj , we estimate the AR(1) model

without any breaks and obtain the residuals. The absolute value of these residuals

are regressed on a constant and a binary variable, where the binary variable is 0 for

t < τj , and 1 for t ≥ τj . The QLR statistic is the squared t statistics of the binary

variable. We search over the central 70% of the sample for the maximal QLR statistic

to determine τj .

The estimated potential break points for the conditional mean and variance of the

macroeconomic volatility series are presented in Table 4. For comparison, structural break

test results are reported for the four volatility transformations explored in Section 2.2.

Odd columns are the estimated breaks in the conditional mean of the volatility series while

even columns are the estimated breaks in the conditional variances. We focus on the break

points in consumption growth, inflation, the output gap, and the Federal funds rate.

In general, the estimated break dates are more statistically significant for conditional

variances than for conditional means, especially for the GARCH filtered models in columns

(5) to (8) in Table 4. Columns (5) and (7) show that none of the break dates in the

conditional mean is statistically significant with the exception of the Federal funds rate for
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the GARCH-SQR model. On the other hand, the estimated break dates in the conditional

volatility are statically significant at the 5% level for the volatility series of consumption

growth, inflation, and the output gap in columns (6) and (8). The evidence from the

GARCH models suggests that the structural break associated with the Great Moderation is

more likely attributed to a change in the conditional vol-of-vol, as opposed to a change in the

conditional mean of macroeconomic volatility. Across the four volatility transformations,

the estimated break dates for the conditional variance of consumption growth volatility

range between 1969QIII and 1983QI. The estimated break dates for the conditional vol-of-

vol on inflation and the output gap have a narrower range between 1977QI and 1984QII.

Lastly, for interest rate volatility, the estimated break in conditional variance is 1985QIV,

but insignificant for the GARCH models. Consistent with the finding of Stock and Watson

(2003), the QLR statistics suggest the structural break in macroeconomic volatility is likely

to have taken place between 1980QI and 1984QIV.

For robustness, we use a second test to determine break points in macroeconomic

volatility. Figure 4 and Figure 5 plot results of a CUSUM test applied to each of the 10

macroeconomic volatility series, and the squared value of these series, respectively. CUSUM

tests the null that there is no change in the mean of a given series without assuming any

underlying distribution.11 In each figure, the four subplots correspond to the four volatility

transformations. In each subplot, the vertical-axis is the year of the potential break point,

and the horizontal axis contains each of the 10 variables in the VAR. For the purpose of

the return predictability analysis, we focus on the tests for consumption growth, inflation,

output gap, and the Federal funds rate. A missing data point means the CUSUM test is

not able to find a break point in the series.

11We do not use weight to adjust the cumulative sum in the max operator and use a threshold of 0.01
to be conservative.
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Figure 4 shows that consumption growth and output gap volatilities exhibit breaks

right around 1980, while, inflation volatility and interest rate volatility display breaks

in the early part of 1980. Figure 5 shows that the CUSUM test finds similar breaks in

the vol-of-vol for consumption growth and inflation when the volatilities are constructed

using GARCH estimations (subplots (c) and (d)). The vol-of-vol of consumption growth,

inflation, the output gap, and the short rate exhibit break points around 1980, consistent

with the results from the QLR test.

2.4 Return Predictability

Based on the structural break evidence for macroeconomic volatility, we conduct stock

and bond return predictive regressions for post-war data before and after the structural

break. The early sample is from 1961QIII to 1976QIV, and the late sample is from 1982QI

to 2008QIII. The gap between the two subsamples eliminates the policy experiment period

as well as the Oil Shock, which has an outsized influence on return predictability, as

shown by Goyal and Welch (2008). The predictability analysis is performed using standard

predictors and macroeconomic volatility. For each set of predictors, we conduct predictive

regressions for stock and bond cumulative returns with horizons from 1 to 20 quarters. All

t-statistics are calculated from GMM-corrected standard errors incorporating Newey-West

weighting and 10 lags.

2.4.1 Standard Predictors

Previous literature has identified economic and financial variables with significant pre-

dictive power for stock and bond returns. We analyze the predictive power of some of these

variables during the sample periods under study. Specifically, we use the dividend yield for
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the aggregate stock market (d − p) and the wealth-consumption ratio (cay) from Lettau

and Ludvigson (2001) to predict stock returns and forward rates implied by the Treasury

yield curve (f) to predict bond returns.12 This analysis is useful to make comparisons to

the predictive ability of macroeconomic volatility.

The regressions are

rkt→t+p = αkp + βkp,jPred
k
t + εkj,t+p, (2)

where rkt→t+p denotes p-quarter cumulative returns for k = {stock, 5-year bond} , and

Predjt denotes the predictor for j = {d− p, cay, f}.

Figures 6, 7, and 8 show statistics of predictive regressions for the full, early, and late

samples. Subplots in the left column are for R2s of the regressions, and subplots in the right

column are for t-statistics. The horizontal axes denotes the horizon of cumulative returns

in quarters. The three rows contain results for regressions of stock returns on dividend

yields, stock returns on cay, and bond returns on forward rates, respectively.

For the full sample 1961QIII to 2008QIII in Figure 6, the top row shows that the R2s

of the predictive regressions on the dividend yield are substantial at long return horizons,

with significant slope coefficients beyond 2-quarter holding period horizons. The results

are similar when cay is used as the regressor to predict stock returns. The second row in

the figure indicates that the maximal R2 is about 25% at 14 quarters, and the estimated

slope coefficients are statistically significant for almost all return horizons. For 5-year

bond returns, the third row in the figure shows that forward rates have monotonically

increasing predictive power at longer horizons. However, the slope coefficients are generally

12We choose to use individual forward rates as opposed to the Cochrane and Piazzesi (2005) factor be-
cause their estimated coefficients are for monthly observations whereas we are using quarterly observations.
Furthermore, there is no reason to believe the linear relationship of the forward rates is constant over time.
Given our prior that bond return predictability has changed over time, it might be inappropriate to apply
the forward factor estimated from a sample that is different than what we are using in this paper.
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insignificant at the 5% level beyond 4 quarters.

Figure 7 presents the results for the predictive regressions in the early sample 1961QIII

to 1976QIV. In the top row, dividend yield has strong predictive power on stock returns in

terms of R2 and t-statistics, especially at the medium horizon. The maximal R2 reaches

55% at the 8 quarter horizon. The same is true for cay in predicting stock returns in the

second row of the figure: a maximal R2 of around 40% at the 12 quarter horizon with

highly significant estimated slope coefficients in the medium horizon. For bond returns

in the bottom row, the predictability evidence is strong at long horizons with a maximal

R2 of more than 50% at 16 quarters. Furthermore, the corresponding t-statistics of the

coefficient loadings on the forward rates are highly significant.

Figure 8 summarizes the predictive regression results for the late sample 1982QI to

2008QIII. In general, the evidence of predictable stock and bond returns is weaker relative

to the early sample. For stock returns, in the top and middle rows, maximal R2s are

substantially lower relative to the regressions R2s in the early sample. For example, when

dividend yield is used as the predictor in the top row, the maximal R2 is around 40%

compared with more than 50% in the top row of Figure 7. The statistical significance of the

slope coefficients on both dividend yield and cay considerably declines. In fact, estimated

coefficients on cay are only significant at the very short and the very long cumulative return

horizons, and they are insignificant between 5- and 15-quarter holding periods. For bond

return regressions on forwards rates, results in the bottom row exhibit reasonably high R2s

and statistically significant slope coefficients. However, the maximal R2 is at most 35%,

lower than the maximal R2 of more than 50% in the early sample. Overall, the evidence

points to weaker predictability on stock and bond returns using standard predictors after

the structural break in macroeconomic volatility.
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2.4.2 Macroeconomic Volatility as Predictor

We use the macroeconomic volatility series described in Section 2.2 to run the pre-

dictive regressions specified in equation (1). The dependent variables are stock and bond

cumulative returns with horizon p from 1 to 20 quarters. We focus on the volatility of four

macroeconomic variables: the nominal short-term rate, inflation, the output gap, and con-

sumption growth, since they are standard variables in asset pricing models with monetary

policy. Regressions on the volatility of the remaining six variables in the VAR are analyzed

but not reported here. The predictive power of output growth volatility is similar to that

of the output gap, while the volatilities of hours, wage, investment, government spending,

and revenue growth rates do not outperform those of the selected four variables.

Figures 9, 10, and 11 show the predictive power of the macroeconomic volatility series

in the full, early, and late samples. For each sample, residuals (and volatilities) are ob-

tained from the VAR in Section 2.2 using only observations within the sample period. The

respective left columns of the figures display the R2s of the predictive regressions, and the

right columns display the t-statistics of the estimated slope coefficients, βkp,j , in equation

(1).13 The first two rows shows results for stock and bond return regressions, respectively,

on macroeconomic volatility. The bottom two rows are for similar regressions with added

control variables in the form:

rkt→t+p = αkp + βkp,jSV
j
t + ηkp,jControlt + εkj,t+p, (3)

for k = {stock, 5-year bond}, where the controls are the dividend yield and the cay factor

for stock return regressions, and forward rates for bond return regressions.

13To calculate the t-statistics for all the regressions in the empirical exercise, GMM estimated standard
errors are used. For robustness, we repeat the exercise with Newey-West corrected standard errors and the
results do not change.
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For stock returns, Figure 9 for the full sample shows that the volatility of inflation

dominates the volatility of the other three variables in predicting future returns at short

horizons in terms of R2, except for the very long horizon, beyond 18 quarters, where interest

rate volatility has better explanatory power. In terms of t-statistics, none of the loadings

on volatility is significant at any horizon in the top right subplot. However, when control

variables are added to the regressions, the third subplot in the right column shows that

interest rate volatility significantly predicts returns in the short-to-medium term, while the

volatility of the output gap and consumption growth have significant loadings for longer

horizons. Interestingly, the loading on interest rate volatility is significantly negative on 4-

to 8-period returns, which implies that high interest rate volatility typically lead periods

of low expected stock returns in the 1961QIII to 2008QIII sample.

For 5-year bond returns, the second subplot in the left column of Figure 9 indicates

that interest rate volatility outperforms the other three volatilities in the predictive re-

gressions beyond 6 quarters. For the shorter horizon holding period returns, consumption

growth volatility dominates. However, once forward rates are included as controls in the

regressions, the bottom left subplot shows that inflation volatility outperforms the rest

when predicting bond returns in the medium to long horizon in terms of R2. This is also

reflected in the t-statistics in the bottom right plot: the estimated loading on inflation

volatility is the only one consistently significant when holding period returns of 6 quarters

or more are used in the regressions. Furthermore, this loading is negative, meaning that

high inflation volatility lead to low future bond returns. Interest rate and consumption

growth volatilities both have positive and significant coefficient loadings on bond returns in

the medium to long horizon, as shown by the second subplot of the figure . However, once

the forward rates are included in the regressions, the bottom subplot shows that inflation

volatility is the only variable having a significant coefficient loading consistently across
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horizons.

Figure 10 reports regression results for the early sample 1961QIII to 1976QIV. The R2s

indicate that consumption growth and inflation volatilities are stronger predictors than

interest rate and output gap volatilities for both stock and bond returns. Consumption

growth volatility especially stands out in the long horizon beyond 15 quarters, reaching a

maximum of roughly 40% for stocks and 70% for bonds in the top two subplots on the left.

The bottom two left subplots in the figure confirm the predictive power of consumption

growth and inflation volatilities in the longer horizon when control variables are added.

With respect to the statistical significance of the estimated loadings on volatility displayed

in the right column of the figure, the bottom two subplots show that, for long horizon

predictive regressions at 15 quarter or more, the coefficient loadings on consumption growth

and interest rate volatilities are highly significant for stock returns, while all four variables

have significance for bond returns. Also, future stock and bond returns load with opposite

signs on volatility. The third subplot in the right column indicates that loadings in long

horizon stock return regressions are negative, whereas the bottom subplot show positive

loadings for bond return regressions. That is, periods of high volatility are followed by

low stock returns and high bond returns at long horizons during the period 1961QIII to

1976QIV. Furthermore, in both cases, the loadings on volatility switch signs: from positive

in the short to medium horizon around 8 quarters to negative in the long horizon for stock

returns, and from negative in the short horizon to positive in the long horizon for bond

returns.

For the late sample 1982QI to 2008QIII, predictive regression results are shown in

Figure 11. Overall, return predictability for stocks and bonds is significantly lower than

for the early sample. In regressions on volatility with no control variables, the maximal R2

for stock returns is about 8% (output gap volatility), and the maximal R2 for bond returns
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is roughly 25% (inflation and output gap volatilities), both substantially lower than in the

early period. From the top left subplot of the figure, consumption growth volatility does

not predict stock returns. Once the dividend yield and cay are included as control variables,

the third subplot in the left column shows that inflation volatility dominates the remaining

three volatilities in terms of R2 of the predictive regressions. For bond returns, in the

second subplot in the left column, inflation and output gap volatilities generate the highest

R2s, and consumption growth volatility has no predictive power across all horizons. In

addition, the right column shows statistical significance of the estimated volatility loadings

in equations (1) and (3). For stock returns, the only significant loading is on inflation

volatility at long horizons when the dividend yield and cay are included as control variables.

For bond returns, the loading on inflation volatility becomes barely significant at the 5-

year horizon once the forwards rates are used as controls. Figure 12 plots the t-statistics

using bootstrapped standard errors14 in univariate return predictability regressions when

macroeconomic volatilities are the predictive variables. Each subplot shows the t-statistics

across holding period return horizons. Comparison between the second and third rows of

Figure 12 documents that the coefficient estimates in these predictability regressions are

more statistically significant in the early sample (second row) relative to the late sample

(third row), in line with our conclusion by examining R2s in Figures 10 and 11.

For robustness, we perform hypothesis testing using unpaired t test and F test with the

null that the residuals from predictive regressions for the early and late samples are similar

in magnitude. Figures 13 and 14 plot the results for stock and bond returns, respectively.

The subplots (a) to (d) in both figures correspond to the four volatility series used as

14For each sample period, after running the univariate predictive regression, we retain the fitted value
and the residuals. Then, we sample the residuals, add back to the fitted values, and create synthetic returns.
Finally, we reestimate the model using the synthetic returns and retain the coefficient estimates. Repeat the
process 1000 times, and calculate the t values for each holding period return horizon and for each volatility
predictor.
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predictors: consumption growth, inflation, output gap, and the nominal short-term rate,

respectively. The p-value of the tests are plotted against the horizon of cumulative returns.

The red horizontal lines in each subplot of the figures indicate the 5% significance level.

For stock returns, both the unpaired t test and the F test reject the null hypothesis at the

5% level for medium and long horizon predictive regressions beyond 10 quarters, except

for subplot (c) where output gap volatility is the predictive variable. For bond returns,

the null hypothesis is always rejected at all horizons and across all predictors, from (a) to

(d). The t test and the F test provide statistical evidence that the fit of the predictive

regressions is significantly better in the early sample, consistent with the higher R2s in

Figure 10 relative to Figure 11.

Overall, the subsample analysis highlights three properties of the link of asset returns

and macroeconomic volatility in the data. First, the predictive power of macroeconomic

volatility drops in the late sample relative to the early sample for both stock and bond

returns. Second, among macroeconomic volatilities, consumption growth and inflation

volatilities have the largest predictive power for asset returns in the early and late samples,

respectively. Third, consistent across both sample periods, long horizon stock and bond

returns load negatively and positively, respectively on lagged volatility.

2.4.3 Out of Sample Evidence on Return Predictability

The empirical asset pricing literature has popularized in recent years the use of out of

sample forecasts as a more stringent test on the predictive power of explanatory variables.

Out of sample forecasts serve as a natural way to compare the predictive power of macroe-

conomic volatility across subsamples. If the early sample (1961QIII to 1976QIV) exhibits

stronger stock and bond return predictability from macroeconomic volatility relative to the
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late sample (1982QI to 2008QIII), the root mean square errors of the forecast deviation

from realized returns should be smaller. We conduct this analysis in this section.

To examine the out of sample performance of macroeconomic volatilities on returns, we

implement the following strategy in “real time.” First, within each sample, we use the first

half of observations to form the initial estimation window. The benchmark 10-vector VAR

is implemented within the window to find the residuals of consumption growth, inflation,

output gap, and the nominal short rate.15 As in the benchmark analysis, volatilities are

calculated by applying a GARCH absolute error transformation to these residuals. Using

the same time window, we run predictive regressions of asset returns on macroeconomic

volatility to estimate the volatility loadings. These loadings and macroeconomic volatilities

in the last quarter of the estimation window are used to forecast holding period returns

12-, 16-, and 20-quarters ahead. The procedure is repeated by expanding the estimation

window each quarter. The maximal estimation window is the length of the sample minus

the holding period horizon of the forecast. Finally, we calculate root mean square errors

(RMSE) implied by the forecasts relative to realized returns.

The resulting RMSEs for the full, early, and late samples are summarized in Table

5. Panels A, B, and C report the RMSEs of the 12-, 16-, and 20-quarter holding period

horizon returns, respectively. Forecast errors are smaller for both stock and bond return

predictions in the early sample than in the late sample for all four macroeconomic volatility

series. When the volatility of consumption growth is used to forecast 16-quarter stock

returns (Panel B, column 1), the average forecast error in the early and late sample are

0.29%, and 0.39%, respectively. For bond returns, column 2 shows that the average forecast

error using consumption growth volatility as the predictor is smaller for the early sample

15For the out of sample test, we use a VAR(2) instead of a VAR(4) limited by the number of observations
we have in the early subsample.
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(∼ 13%) relative to the late sample (∼ 17%). A similar pattern emerges for the other

macroeconomic volatility variables. For example, inflation volatility generates a stock

return predictability RMSE of about 22% in the early sample compared with 40% in the

late sample, and a bond return predictability RMSE of about 13% in the early sample

compared with 17% in the late sample. The only instance in Table 5 where the RMSE is

not smaller in the late sample relative to the early sample is in column 2 of Panel C. When

the output gap and interest rate volatilities are used to predict 20-quarter holding period

bond returns, there is a small decline in RMSEs from the early sample to the late sample.

In summary, the out of sample forecast exercise solidifies our main empirical finding using

predictive regressions: both stock and bond returns across holding period horizons are less

predictable in the post-1982 sample using macroeconomic volatilities.

3 Equilibrium Model

We build an equilibrium model to learn about potential economic channels driving the

documented decline in return predictability in recent years. The model is an extended

version of the long-run risk (LRR) Bansal and Yaron (2004) model, adding an endoge-

nous process for inflation to price nominal bonds. The model incorporates an interest-rate

policy rule, multiple sources of shocks with time-varying volatility, and an equation link-

ing inflation and the real economy. This setting allows us to obtain an inflation process

and a component of consumption that depend on monetary policy, while preserving most

of the endowment economy structure of the standard long-run risk model. Kung (2015)

uses a similar framework in a production economy setting to analyze the term structure

of interest rates. The model is calibrated to U.S. data and several experiments are con-

ducted to understand the effect of monetary policy and volatility dynamics on asset return
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predictability.

3.1 Economic Environment

The representative household has recursive preferences on consumption, Ct, and has

access to real and nominal financial claims in a complete market. The relevant equilibrium

conditions are:

Mt,t+1 =

[
β

(
Ct+1

Ct

)− 1
ψ

]θ (
1

Rc,t+1

)1−θ
, (4)

e−it = Et
[
Mt,t+1e

−πt+1
]
, (5)

1 = Et[Mt,t+1Rc,t+1], (6)

∆ct = ∆cft + ∆zt, (7)

πt = aπ + φπz∆zt + βπEt[πt+1] + εt, (8)

it = ı̄+ ıππt + ız∆zt + ut. (9)

Equation (4) characterizes the one-period real pricing kernel, Mt,t+1, in terms of consump-

tion and the return on the consumption claim, Rc,t. The parameter ψ captures the elasticity

of intertemporal substitution of consumption (EIS), and θ ≡ 1−γ
1−1/ψ captures the effects of

differences between the risk aversion coefficient, γ, and the inverse of EIS. Equation (5)

provides the price of a one-period nominal bond, with implied one-period nominal interest

rate, it, where inflation is πt. This interest rate is also the instrument of monetary policy.

Equation (6) is the pricing equation for the consumption claim. Equation (7) describes

consumption growth, ∆ct ≡ logCt − logCt−1, in terms of two components. First, cf ,

which is interpreted as the component of consumption that is not affected by monetary

policy. For instance, this can be the natural rate of consumption in an economy with no
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nominal rigidities. Second, zt, which is interpreted as the component of consumption that

is affected by monetary policy. For simplicity, we refer to cft and zt as the “natural rate

of consumption” and the “output gap,” respectively. Equation (8) characterizes the link

between inflation and the output gap, where εt is a cost-push shock. This equation can

be derived from a model with price rigidities as in Woodford (2003).16 Equation (9) is

the interest-rate policy rule where the nominal interest rate is set depending on inflation,

changes in the output gap, and policy shocks ut.

Risk in the economy is captured by innovations to the natural rate of consumption

growth and its conditional mean, εc,t, and εx,t, respectively, monetary policy shocks, εu,t,

cost-push shocks, εε,t, and shocks to volatility, εv,t. Specifically,

∆cft+1 = µc + xt + σc,tεc,t+1,

xt+1 = φxxt + σx,tεx,t+1,

ut+1 = φuut + σu,tεu,t+1, (10)

εt+1 = φεεt + σε,tεε,t+1,

vt+1 = φvvt + σvεv,t+1,

where conditional variances follow the process

σ2
k,t = σ̄2

k + σkvvt, (11)

for k = {c, x, u, ε}, and εk,t ∼ IIDN (0, 1).

The appendix shows that equilibrium implies solutions for the change in the output

16For simplicity, we characterize a link between inflation and changes in the output gap, instead of the
output gap level. This particular specification, where inflation depends also on the lagged output gap level,
can result from a model with habit formation on consumption preferences.
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gap and inflation given by

∆zt = zxxt + zuut + zεεt + zvvt, and πt = π̄ + πxxt + πuut + πεεt + πvvt,

respectively.

3.2 Stock and Bond Returns

Stocks are a claim on dividends, dt. Following the long-run risk literature, dividend

growth is given by

∆dt+1 = µc + φdcEt[∆ct+1 − µc] + σdcσc,tεc,t+1 + σd,tεd,t+1,

where σ2
d,t = σ̄2

d + σdvvt. Real stock returns, Rrd,t, satisfy the pricing equation 1 =

Et[Mt,t+1R
r
d,t+1]. These returns can be written in terms of the log price-dividend ratio,

pd,t, and dividend growth as

logRrd,t+1 = log (1 + epd,t+1) + ∆dt+1 − pd,t ≈ η̄d + ηdpd,t+1 + ∆dt+1 − pd,t,

with approximation constants η̄d and ηd defined in the appendix. For data comparisons,

we define the nominal (log) stock return as

rd,t = logRrd,t + πt.

The nominal yield of the n-period bond is y
(n)
t . The corresponding bond price satisfies
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the recursive equation

e−ny
(n)
t = Et

[
Mt,t+1e

−πt+1−(n−1)y
(n−1)
t+1

]
,

and the nominal one-period bond return is

r
(n)
t+1 = logR

(n)
t+1 = −(n− 1)y

(n−1)
t+1 + ny

(n)
t .

Equilibrium implies solutions for the price-dividend ratio and bond yields given by

pd,t = p̄d + pd,xxt + pd,uut + pd,εεt + pd,vvt,

and y
(n)
t = ȳ(n) + y(n)

x xt + y(n)
u ut + y(n)

ε εt + y(n)
v vt,

respectively, with coefficients reported in the appendix.

4 Analysis

In this section, we describe the calibration exercise and policy experiments meant to

capture certain stylized facts in the data and learn about the economic mechanisms at

work. Based on the model implications, we provide further empirical evidence that provides

support to the mechanism capturing a reduction in asset return predictability.

4.1 Model Calibration

The model is calibrated to replicate properties of macroeconomic and financial U.S.

quarterly data for the period 1961QIII to 1976QIV. The purpose of the calibration is to
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obtain a reasonable baseline model to explore, through quantitative experiments, whether

the structural break in volatility dynamics and the documented changes in asset predictabil-

ity around 1980 can be explained by changes in monetary policy, changes in the properties

of fundamental shocks, or a combination of both. This approach is similar in spirit to the

one in Campbell, Pflueger and Viceira (2016). The data description is presented in the

empirical section. We assume that decisions in the model are made at quarterly frequency

to use the closed-form solutions of model moments in the calibration. Standard long-run

risk models are usually calibrated at annual frequency by aggregating monthly simulated

data implied by the model. A disadvantage of this approach is that it requires model sim-

ulations to compute numerical moments, which considerably reduces the computational

speed for calibration purposes. On the other hand, a limitation of our approach is the

fact that closed-form moments for variables of interest such as the volatility of conditional

volatility, and the statistics of predictive regressions on volatility are not available. We

deal with this limitation as explained below.

The calibration consists in choosing a set of parameters that minimizes deviations of

selected model moments from their data counterparts. As a first step, a constant volatility

model is calibrated to obtain a reasonable set of initial values for all parameters, except

for the loadings on the volatility process σkv for k = {x, u, ε, d}, which are set to zero.

The moments that are used in this step are the standard deviation and first-order auto-

correlation of consumption growth, inflation, and the one-quarter nominal interest rate,

as well as the paired correlations among these variables. The dividend growth process is

calibrated to match the volatility of dividend growth and the correlation of consumption

and dividend growth. In addition, the average inflation and one-quarter nominal interest

rates, the average price-dividend ratio, the average equity premium, and the average 5-year

nominal bond spread are targeted in the calibration.
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The constant volatility model, by construction, implies that asset returns cannot be

predicted by macroeconomic volatility, in contrast with the empirical findings. We use

the calibration of the constant volatility model as a starting point to calibrate the model

with time-varying volatility. In addition to the parameters calibrated for the model with

constant volatility, parameter values for the loadings on volatility σkv for k = {x, u, ε, d}

are also chosen. Ideally, in order to identify these parameters, we would use statistics from

the predictive regressions of asset returns on macroeconomic volatility. Unfortunately,

these statistics are not available in closed-form. We then target slope coefficients and R2’s

of the alternative predictive regressions of 5-year cumulative returns of stocks and 5-year

nominal bonds on the level of the variable. We also add the restriction that the equity

premium and the bond spread have to be above certain level, to avoid calibrations with

counterfactually low values for these moments. The minimization of moment deviations

is performed multiple times from initial points that are perturbations from the parameter

values of the model with constant volatility. For each reasonable minimization, we compute

numerical moments of the predictive regressions of asset returns on macroeconomic variance

and choose the parameter values with the best implications for these regressions. A VAR

of the simulated macroeconomic variables is used to obtain conditional variances as the

square of the VAR residuals.

Table 6 shows the parameter values for the calibration. The elasticity of intertemporal

substitution above 1 is close to the value in Bansal and Yaron (2004). The coefficient of risk

aversion is 30, which is higher than the values used in the long-run risk literature to match

the equity premium. The higher value is needed to match the average bond spread. The

coefficient φπz, which captures the link between inflation and the real economy is negative

in order to match the observed negative correlations of consumption growth with inflation

and the nominal interest rate. The response in the policy rule to inflation, around 1.45, is
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close to the estimates found in the literature, and the response to changes in the output

gap is negative, around -0.35. With respect to the shock parameters, the process xt does

not exhibit autocorrelation, and its loading on volatility is negative. Policy shocks have

significant autocorrelation and a positive loading on volatility. Cost-push shocks are not

autocorrelated and have a negative loading on volatility. Finally, the volatility process is

highly autocorrelated.

Table 7 shows several moments implied by the calibration. The model calibration

matches the volatility of the one-quarter nominal interest rate, and implies a consumption

growth and inflation volatilities slightly higher and lower than in the data, respectively.

The autocorrelations of inflation and the nominal interest rat, although lower lower than in

the data, are significantly positive. The negative correlation between consumption growth

and inflation is well captured, as well as the correlations of the nominal interest rate with

consumption growth and inflation. The quarterly equity premium is 83 bps and the average

bond spread is 77 bps, both similar to those implied by the data. The calibration does a

reasonable job capturing the R2s of the predictive regressions of the 5-year bond cumulative

return on macroeconomic volatility. On the other hand, the R2s for the comparable stock

return regressions are lower than in the data. Overall, the calibration captures important

aspects of the U.S. economy during the 1961-1976 period, and provides a reasonable baseline

framework to conduct experiments and analyze their effects on asset return predictability.

4.2 Experiments

We use data for the subsample 1982QI - 2008QIII to learn whether the joint changes

in macroeconomic volatility dynamics and return predictability observed during this pe-

riod, relative to the subsample 1961QI - 1976QIV, can be explained by changes in policy
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parameters, properties of fundamental shocks, or both. Specifically, the experiments con-

sist in changing selected parameters to match the moments targeted in the calibration for

the 1982QI - 2008QIII subsample, while keeping the remaining parameters at their base-

line levels.17 The purpose of this exercise is to determine how well changes in a reduced

set of parameters can capture changes in targeted moments. In particular, we are inter-

ested in understanding potential economic drivers of the following changes: the reduction

of consumption growth and inflation volatility that was accompanied by an increase in

interest-rate volatility, the reduction in the autocorrelation of inflation that was accompa-

nied by an increase in the autocorrelation of the three-month nominal interest rate, a less

negative correlation between consumption growth and inflation, a positive (from negative)

correlation of consumption growth and the nominal interest rate, a larger average bond

yield spread and higher average excess stock returns, and the reduction in the asset return

predictability explained by macroeconomic volatility.

The experiments are divided into three groups: changes only to policy parameters,

changes only to shock parameters, and changes to shock parameters accompanied by a

stronger response to inflation in the policy rule.18 For simplicity, policy parameters group

the responses to inflation, ıπ, and changes the output gap, ız, in the monetary policy rule,

as well as the coefficient linking inflation to the real economy, φπz. This parameter can be

affected by pricing policies in the production sector.

Table 8 reports the results of the experiments with changes to policy parameters. The

first experiment is a change in the response to inflation in the policy rule, ıπ. The experi-

ment favors a significant increase in this response, consistent with the literature. As shown

17The procedure is similar to the one used to obtain the baseline calibration. However, the experiments
do not include the restriction on a minimum level for the average bond spread and the equity premium.

18We considered additional experiments such as changing the parameters in the dividend growth process
or, more interestingly, the volatility dynamics. None of these experiments provided insightful results.
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in column (2) of the table, this change results, consistent with the data, in lower volatility

of consumption growth and inflation, a lower autocorrelation of inflation, a less negative

correlation of consumption growth and inflation, and lower R2s of predictive regression of

stock returns on macroeconomic volatility. However, the experiment also implies counter-

factual changes such as reduced volatility and autocorrelation in the nominal interest rate,

lower average bond spreads and equity premium, and increased predictability of bond re-

turns on macroeconomic volatility. In addition, the model fails to capture the change from

negative to positive of the correlation between consumption growth and the nominal inter-

est rate. Column (3) in the table presents model moments implied by the experiment of

changing the response to changes in the output gap in the policy rule, ız. This experiment

lowers this response, but has limited effect on both sets of macroeconomic and financial

moments. Column (4) corresponds to the experiment of changing the parameter φπz in

the equation linking inflation to the output gap. The experiment implies a slightly less

negative parameter φπz, and small changes in macroeconomic moments, a higher equity

premium, and higher predictive power of macroeconomic volatility for asset returns. Fi-

nally, column (5) shows the moments related to the experiment of simultaneously changing

ıπ, ız, and φπz. The experiment favors significant increases in the responses to inflation

and the change in the output gap in the policy rule, accompanied by a significantly positive

coefficient φπz. The results of the experiment are similar to those of only changing ıπ in

column (2), with the advantage of capturing a positive correlation between consumption

growth and the nominal interest rate, a sizable equity premium, and a reduction in the R2s

of predictive regressions for asset returns. However, the experiment fails to capture the

increased volatility and autocorrelation of the nominal interest rate, a reduced correlation

of this rate with consumption growth, and implies a counterfactually negative average bond

spread. In summary, the first set of experiments tends to favor a stronger monetary policy
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response to inflation in the second subsample, possibly accompanied by a change in the

structural link between the real economy and inflation which tends to reduce asset return

predictability. However, changes in these coefficients do not seem sufficient to capture some

important changes in macroeconomic dynamics during the period.

Table 9 reports model moments for the second set of experiments. Each experiment

consists in changing the parameters describing individual shocks, while keeping all other

parameters at baseline levels. The experiment on column (2) corresponds to changing

the dynamics of the conditional mean of the natural rate of consumption growth, xt.

The experiment dramatically increases the autocorrelation coefficient of xt and reduces its

conditional volatility. This change reduces the volatilities of consumption growth and the

nominal interest rate, with a noticeable increase in the autocorrelation of this rate, and

no significant changes in targeted correlations of macroeconomic variables. In addition,

R2s of asset return predictive regressions on macroeconomic volatility tend to increase.

The second experiment on column (3) consists of changing the parameters describing the

dynamics of policy shocks ut. This experiment implies a slightly higher autocorrelation for

these shocks, with a lower average conditional volatility and a higher positive loading on

the volatility process. These parameter changes have no noticeable effects on the volatility

of consumption growth and inflation, tend to increase the volatility and autocorrelation

of the nominal interest rate, considerably increase the average bond spread and equity

premium, and increase the predictive power of macroeconomic volatility for stock returns

without affecting the predictability for bond returns. The final experiment in this set

changes the cost-push shock parameter. The experiment increases the autocorrelation of

these shocks and reduces the negative loading of their conditional volatility on the volatility

process. There are no significant effects on the targeted macroeconomic moments, a small

reduction in the average bond spread and an increased equity premium. However, the
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change in the cost-push shock dynamics tends to reduce R2s in asset return predictive

regressions on macroeconomic volatility. In summary, the results of these experiments do

not suggest that the observed changes in macroeconomic and financial variable dynamics

are the result in the dynamics of the natural rate of consumption growth, favor a small

change in the dynamics of policy and cost-push shocks to capture, respectively, a higher

autocorrelation and volatility of the nominal interest rate, and lower R2s in asset return

predictive regressions. However, individual changes in shock dynamics have limited ability

to explain all the changes observed in the second subsample.

Based on the results of the first set of experiments (changes in policy parameters), we

conduct a third set of experiments similar to the second set but setting the response to

inflation in the policy rule at the higher value, ıπ = 1.75. Table 10 reports the experiment

results. Qualitatively, most of the results are similar to those of the experiments in Table

9. As an advantage, increasing ıπ better captures changes in macroeconomic and financial

moments, including the reduced asset return predictability. Notably, the only exception

is the increase in the R2s of the bond return predictive regressions resulting from changes

in the cost-push shock dynamics. In summary, the experiments suggest that the observed

changes in macroeconomic and financial variables documented for the period 1982-2008 are

consistent with changes in both policy parameters and shock dynamics.

4.3 Cost-Push Shocks: Model Intuition and Empirical Evidence

The experiments above favor a reduction in asset return predictability resulting from

more persistent cost-push shocks and reduced variation in the volatility of these shocks. To

understand the economic intuition behind this result, consider the regression in equation
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(1). The OLS slope coefficient and R2 of this regression are

βkp,j =
cov(rkt→t+p, SV

j
t )

var(SV j
t )

, and R2,k
p,j =

(
βkp,j

)2
var(SV j

t )

var(rkt→t+p)
,

respectively. A reduced variation in the volatility of cost-push shocks translates into re-

duced responses of consumption growth, inflation, and their volatilities to volatility shocks.

This, in combination with more persistent cost-push shocks, is reflected in a lower sensi-

tivity of asset returns to volatility shocks, and a higher sensitivity to cost-push shocks. As

a result, there is a significant reduction in the covariance of these returns with macroeco-

nomic volatility relative to the reduction in the variance of macroeconomic volatility, which

reduces βkp,j . In turn, the R2 in the predictive regression declines.

Consistent with the model experiment, we find empirical support for both more per-

sistent cost-push shocks and reduced variation in their volatility for the late subsample

relative to the early one. Specifically, we rely on equation (8) to obtain estimates of cost-

push shocks. This equation can be seen as a regression that links inflation to changes in the

output gap and expected inflation, where the residuals capture cost-push shocks. Absolute

or squared values of these residuals are measures of the volatility of these shocks. Table 11

reports first-order autocorrelations of cost-push shocks, εt, and their volatility calculated

as the mean of the conditional volatility measures abs(εt) or ε2t , for our early and late

samples. 1982QI is the cutoff point between the early and late subsamples, in line with

the empirical analysis. Expected inflation in equation (8) is the one-period ahead fitted

value of inflation from the benchmark 10-element VAR(4) employed in Section 2.2. The

statistics show increased persistence and reduced conditional volatility in cost-push shocks

from column (1) to column (2). This result provides empirical support to changes in the

properties of cost-push shocks as an explanation of decreased asset return predictability in
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the late sample.

5 Conclusion

This paper documents and explores a significant predictive ability of the volatility

of consumption growth, inflation, and a nominal short-term interest rate for U.S. stock

and bond returns for the 1961-1977 period, followed by a decline in this ability after the

Great Moderation. An equilibrium model with a monetary policy interest-rate rule and

time-varying volatility in several economic shocks captures the documented asset return

predictability. Experiments using the model suggest that both an increase in the response

to inflation in the policy rule and changes in shock dynamics are required to explain the

simultaneous reduction in macroeconomic volatility and return predictability. In particular,

more persistent cost-push shocks with reduced variation in their volatility generate a decline

in this predictability. The analysis can be useful to provide a better identification of the

drivers of the Great Moderation by incorporating its implications on the relation between

financial and macroeconomic variables. The model, however, relies on a reduced-form

equation linking inflation and the real economy. Further work, where this link is obtained

from first principles, is required to verify the validity of the theoretical results.
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Tables and Figures

Table 1: Descriptive Statistics of U.S. Macroeconomic and Financial Data in
the Post-war Sample for Quarterly Observations
The macro variables are log consumption growth (∆c), inflation (π), log output gap (z), and the nominal short-
term interest rate (i). The financial variables are log dividend yield (d − p), log dividend growth (∆d), log equity
return (Stock), and log return of the 5-year to maturity nominal bond (Bond). Mean, standard deviation, first-order
autocorrelations and correlations are reported. Panel A covers the full sample from 1961QIII to 2008QIII, panel
B covers the early subsample from 1961QIII to 1976QIV, and panel C covers the late subsample from 1982QI to
2008QIII. Sources: FRED database, CRSP, and Board of Governors of the Federal Reserve System.

Mean Volatility AR(1) Correlations
∆c π z i d− p ∆d Stock Bond

Panel A: Full Sample 1961QIII to 2008QIII
∆c 0.507 0.456 0.425 1.000
π 0.931 0.590 0.877 -0.228 1.000
z 0.065 1.498 0.863 0.010 0.048 1.000
i 5.623 2.809 0.926 -0.073 0.610 0.158 1.000
dp -4.867 0.358 0.949 -0.065 0.628 -0.084 0.659 1.000
∆d 1.515 8.637 -0.716 0.075 0.031 0.005 0.018 0.135 1.000
Stock 2.382 7.930 0.033 0.167 -0.084 -0.204 -0.005 -0.050 0.058 1.000
Bond 1.789 3.457 -0.061 -0.150 -0.066 -0.204 -0.056 0.080 -0.022 0.162 1.000

Panel B: Early Sample 1961QIII to 1976QIV
∆c 0.651 0.517 0.364 1.000
π 1.064 0.648 0.860 -0.412 1.000
z -0.109 1.622 0.849 0.039 -0.113 1.000
i 4.969 1.495 0.886 -0.342 0.765 0.235 1.000
dp -4.799 0.171 0.686 -0.385 0.629 -0.366 0.398 1.000
∆d 1.440 10.251 -0.684 0.045 0.069 -0.061 0.008 0.327 1.000
Stock 1.644 8.996 0.106 0.262 -0.188 -0.315 -0.279 -0.222 0.040 1.000
Bond 1.270 2.423 -0.045 0.003 0.139 -0.260 -0.096 0.217 0.021 0.293 1.000

Panel C: Late Sample 1982QI to 2008QIII
∆c 0.461 0.376 0.424 1.000
π 0.663 0.262 0.614 -0.084 1.000
z -0.021 1.340 0.916 0.026 -0.176 1.000
i 5.198 2.575 0.952 0.276 0.515 -0.039 1.000
dp -4.999 0.376 0.961 0.064 0.581 -0.249 0.685 1.000
∆d 1.416 8.057 -0.740 0.110 -0.140 0.029 -0.007 0.096 1.000
Stock 2.826 7.424 -0.020 0.186 -0.012 -0.153 0.122 0.025 0.076 1.000
Bond 2.305 3.384 0.103 -0.136 0.052 -0.168 0.145 0.251 -0.058 0.008 1.000
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Table 2: Comparison between VAR-implied and the Model-free Measures of
Interest Rate Stochastic Volatility
Unconditional correlations as well as univariate regression t-statistics and R2 between interest rate stochastic volatil-
ities constructed from the 10-variable VAR and daily data. The VAR-implied measure is constructed from the
residuals of the interest rate equation, applying one of these four transformations: absolute values, squared values,
GARCH absolute values, and GARCH square values. The model-free measure uses daily interest rate data, and
volatility is calculated every quarter. The full sample is from 1961QIII to 2008QIII. Sources: FRED database and
Board of Governors of the Federal Reserve System.

(1) (2) (3)
Correlations t− Statistics R2

VAR(1)
ABS 0.572 4.908 0.324
SQR 0.431 2.890 0.181

GARCH-ABS 0.724 6.424 0.521
GARCH-SQR 0.612 4.625 0.372

VAR(2)
ABS 0.561 4.069 0.311
SQR 0.472 2.565 0.218

GARCH-ABS 0.650 8.795 0.419
GARCH-SQR 0.538 5.210 0.286

VAR(3)
ABS 0.419 2.538 0.171
SQR 0.389 1.758 0.147

GARCH-ABS 0.565 4.548 0.315
GARCH-SQR 0.479 3.202 0.225

VAR(4)
ABS 0.379 2.068 0.139
SQR 0.371 1.637 0.133

GARCH-ABS 0.504 4.321 0.250
GARCH-SQR 0.449 3.691 0.197

VAR(5)
ABS 0.363 2.065 0.127
SQR 0.370 1.616 0.132

GARCH-ABS 0.425 4.301 0.176
GARCH-SQR 0.429 3.281 0.179

VAR(6)
ABS 0.314 1.764 0.093
SQR 0.369 1.582 0.131

GARCH-ABS 0.436 4.259 0.185
GARCH-SQR 0.448 3.824 0.197

VAR(7)
ABS 0.287 1.661 0.078
SQR 0.348 1.536 0.116

GARCH-ABS 0.340 3.191 0.111
GARCH-SQR 0.459 3.954 0.207

VAR(8)
ABS 0.256 1.610 0.060
SQR 0.317 1.448 0.095

GARCH-ABS 0.220 1.831 0.043
GARCH-SQR 0.283 1.826 0.075
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Table 3: VAR Coefficients on the First Lagged Variables and the Constant Term
VAR regression coefficients of the benchmark 10-variable model. Elements of the VAR, in order, are: ouput growth
(∆y), consumption growth (∆c), hours growth (∆h), wage growth (∆w), investment growth (∆inv), government
spending growth (∆g), government revenue growth (∆τ), inflation (π), output gap (z), and the nominal short rate
(i). Four lags are included in the VAR, but only the loadings on the first lag are shown. For brevity, only four
equations pertinent to the predictive regressions are displayed: consumption growth, inflation, output gap, and the
nominal short rate. Panel A covers the full sample from 1961QIII to 2008QIII, panel B covers the early subsample
from 1961QIII to 1976QIV, and panel C covers the late subsample from 1982QI to 2008QIII. Source: FRED database.

Const. ∆yt−1 ∆ct−1 ∆ht−1 ∆wt−1 ∆invt−1 ∆gt−1 ∆τt−1 πt−1 zt−1 it−1

Panel A: Full Sample 1961QIII to 2008QIII
∆ct 0.010 -0.090 -0.132 0.053 -0.054 0.005 0.126 0.021 -0.004 1.155 0.031
πt 0.148 -0.020 0.027 0.037 0.029 0.005 0.109 -0.030 0.199 -0.263 -0.023
zt 0.041 0.061 0.143 0.306 0.012 -0.043 -0.289 0.033 -0.293 0.834 0.025
it -0.374 -0.126 -0.133 0.043 -0.095 0.015 -0.184 -0.005 -0.572 2.668 -0.047

Panel B: Early Sample 1961QIII to 1976QIV
∆ct 0.632 -0.219 -0.161 0.277 0.399 0.009 0.455 0.004 0.398 1.770 0.040
πt 0.160 0.320 -0.242 -0.066 -0.225 -0.061 0.003 -0.063 0.132 -0.558 0.092
zt 1.654 -0.078 0.513 0.363 0.362 0.007 -0.387 0.068 0.411 5.675 0.047
it 2.200 -0.403 0.123 -0.211 -0.544 0.163 -0.926 0.146 0.653 3.154 0.068

Panel C: Late Sample 1982QI to 2008QIII
∆ct -0.150 -0.030 -0.159 -0.008 -0.039 0.018 0.122 -0.018 0.188 0.101 0.078
πt 0.000 0.133 -0.105 -0.114 0.018 -0.006 0.041 -0.009 0.329 0.502 -0.082
zt 0.363 0.143 -0.132 0.278 -0.015 -0.083 -0.037 -0.023 -0.044 -0.947 0.069
it -0.376 0.266 -0.315 -0.177 -0.219 -0.051 -0.020 0.004 -0.120 2.944 0.065
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Table 4: Conditional Mean and Conditional Variance Break Points of Macroeconomic Volatility Series
Estimated by QLR Statistics
This table reports the estimated break points in the conditional mean and the conditional variance of th volatilities of 10 macroeconomic
variables: ∆y is log output growth, ∆c is log consumption growth, ∆h is log hours growth, ∆w is log wage growth, ∆inv is log investment
growth, ∆g is log government spending growth, ∆τ is log government revenue growth, π is log inflation, x is log output gap, i is the nominal
short rate. The analysis assumes AR(1) models for volatility. ∗ denotes statistical significance at the 10% level. ∗∗ denotes statistical
significance at the 5% level. ∗ ∗ ∗ denotes statistical significance at the 1% level. Source: FRED database.

ABS SQR GARCH-ABS GARCH-SQR
(1) (2) (3) (4) (5) (6) (7) (8)

mean variance mean variance mean variance mean variance

∆y 1983QIII 1983QIV∗∗ 1983QIII 1982QI ∗∗∗ 1981QI 1981QI ∗∗∗ 1981QI 1980QIV∗∗

∆c 1992QIV∗∗ 1969QIV∗∗∗ 1981QIV∗∗ 1969QIV∗∗ 1979QIV 1969QIII∗∗ 1979QIV 1983QI ∗∗

∆h 1976QI 1981QIV∗∗∗ 1975QIII ∗∗ 1981QII ∗∗ 1974QII 1980QIV∗ 1974QII 1979QII

∆w 1989QI 1991QII 1997QIV 1991QII∗ 1987QIV 1986QII 1987QIV 1987QIV

∆inv 1974QIII ∗∗∗ 1983QII∗∗∗ 1971QII∗∗∗ 1984QII∗∗∗ 1973QII∗ 1982QIII∗∗ 1973QII 1981QIV ∗∗∗

∆g 2001QIV 1970QI 1969QIV 1970QI ∗∗∗ 2000QIII 2000QIV 2000QIII 1969QIII

∆τ 1975QIII 2001QIV 1975QIII∗∗ 1975QIV 1984QI 1998QIII 1974QI 1974QI

π 1986QII 1978QIII ∗∗∗ 1978QII ∗∗ 1978QIII ∗∗∗ 1990QI 1977QI ∗∗ 1977QI 1977QI ∗∗

z 1983QIII 1984QII∗ 1983QIII 1982QI ∗∗ 1981QI 1980QIII∗∗ 1981QI 1980QIII∗∗

i 1985QIII∗∗∗ 1985QIV∗∗ 1980QIII ∗∗∗ 1985QIV ∗∗ 1984QII 1982QII 1979QI ∗∗∗ 1984QIII
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Table 5: Out of Sample Forecast Root Mean Square Error (RMSE)
Out of sample return forecast performed with an expanding estimation window within the full, early, and
late samples. In each case, macroeconomic conditional volatilities are constructed from the benchmark
10-vector VAR using only the first half of observations in the given sample as the initial estimation window.
Residuals of the consumption growth, the inflation, the output gap, and the nominal short rate equations
are then transformed by GARCH-ABS to obtain conditional volatilities. Univariate predictive regressions
are employed within the window to estimate the predictive coefficient. In each iteration, the estimation is
done by expanding the window by one quarter. Return forecasts are done in “real time” for horizons of 12,
16, and 20 quarters. The RMSE is calculated from the difference between forecasted and realized returns.
Sources: FRED database, CRSP, and Board of Governors of the Federal Reserve System.

Conditional (1) (2)
Volatility Stock Forecast Error Bond Forecast Error

12 Quarter Ahead Cumulative Return
Full Sample ∆ c 0.2439 0.0965

π 0.2412 0.0986
z 0.2365 0.1084
i 0.2476 0.1026

Early Sample ∆ c 0.2735 0.1042
π 0.2492 0.1063
z 0.2398 0.1049
i 0.242 0.1092

Late Sample ∆ c 0.3232 0.1426
π 0.3426 0.1367
z 0.3306 0.1145
i 0.3306 0.1203

16 Quarter Ahead Cumulative Return
Full Sample ∆ c 0.2871 0.1066

π 0.2867 0.1118
z 0.2853 0.1309
i 0.2955 0.1265

Early Sample ∆ c 0.2855 0.1269
π 0.2209 0.1281
z 0.2232 0.1251
i 0.2039 0.1335

Late Sample ∆ c 0.3871 0.1711
π 0.4068 0.166
z 0.3873 0.1278
i 0.3929 0.1437

20 Quarter Ahead Cumulative Return
Full Sample ∆ c 0.3156 0.1173

π 0.3164 0.1233
z 0.3173 0.1481
i 0.3311 0.1484

Early Sample ∆ c 0.3798 0.1689
π 0.3574 0.1806
z 0.2909 0.1721
i 0.1853 0.1951

Late Sample ∆ c 0.4423 0.184
π 0.4507 0.1801
z 0.4306 0.1295
i 0.4397 0.1581
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Table 6: Baseline Calibration
Parameter values implied by the baseline calibration. The values are chosen to minimize deviations of a set
of macroeconomic and financial moments implied by the model relative to their data counterparts for the
1961:Q1-1977:Q4 period.

Variable Variable Description Value
(calibrated)

β Subjective discount factor 0.9969
γ Risk aversion 30.0000
ψ Elasticity of intertemporal substitution 1.4386
σ̄c Constant term of consumption growth volatility 0.0000
φx Autoregressive coefficient of the conditional mean of consumption growth 0.0000
σ̄x × 103 Constant term of the volatility of the conditional mean of consumption growth 0.3508
σxv Loading on vt of the volatility of the conditional mean of consumption growth -4.1536
φπz Sensitivity of inflation to the output gap -0.5415
βπ Sensitivity of inflation to expected inflation 0.9909
iπ Interest-rate rule coefficient on inflation 1.4594
iz Interest-rate rule coefficient on output gap -0.3546
φu Autoregressive coefficient of the monetary policy shock 0.6325
σ̄u × 103 Constant term of the monetary policy shock volatility 4.5865
σuv Loading on vt of the volatility of the monetary policy shock 4.2775
φε Autoregressive coefficient of the cost-push shock 0.0000
σ̄ε × 103 Constant term of the cost-push shock volatility 3.4841
σεv Loading on vt of the volatility of the cost-push shock -1.2848
φdc Autoregressive coefficient of dividend growth 4.7385
σ̄d × 103 Constant term of dividend growth volatility 19.6835
σdc Loading of dividend growth on consumption growth shocks -29.8890
σdv Loading on vt of the volatility of dividend growth -2.5531
φv Autoregressive coefficient of volatility 0.9852
σv × 106 Volatility of the volatility process 1.6575

Variable
(fixed)

µc Unconditional mean of consumption growth 0.0064
ı̄ Constant in the interest-rate policy rule 0.0125
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Table 7: Model and Data Moments
Data statistics are for the subsamples 1961:Q3-1977:Q4 and 1982:Q1-2008:Q3. Model moments are computed based on 1,000 simulations

of 1,000 periods each, using the parameters in Table 6. “SD” is the standard deviation. “AC” is the first-order autocorrelation. “CVol” is

the conditional volatility. Predictability R2’s correspond to predictive regressions of 20-quarter cumulative stock and 5-year bond nominal

returns, rd and r(20), respectively.

Basic Moments Correlations Predictability R2’s (%)

Variable Mean
(%)∗

SD
(%)

AC Mean
CVol
(%)

SD
CVol
(%)

π i ∆d rd(0, 20)
on

Level

r(20)(0, 20)
on

Level

rd(0, 20)
on
Vol

r(20)(0, 20)
on
Vol

Model Baseline Calibration
∆c 0.64 0.73 -0.02 0.0040 0.0069 -0.38 -0.42 0.44 0.46 0.31 1.80 5.71
π 0.56 0.55 0.60 0.0019 0.0034 0.72 -0.21 2.24 11.51 1.93 6.97
i 1.25 0.40 0.48 0.0012 0.0026 -0.10 8.38 36.40 2.42 9.01
∆d 0.64 2.87 0.08 0.0516 0.0757 0.09 0.11 0.37 1.25
r 0.63 0.31 0.19
pd 4.74 14.63 0.95
rd 2.08 4.42 -0.07

r(20) 1.57 1.28 -0.02

y(20) − i 0.18
rd − i 0.83
Data 1961:Q3 - 1977:Q4
∆c 0.64 0.51 0.35 0.0020 0.0029 -0.38 -0.32 0.08 4.07 0.55 0.21 0.02
π 1.10 0.65 0.85 0.0009 0.0014 0.76 0.02 41.85 63.65 3.64 7.75
i 1.25 0.37 0.88 0.0003 0.0004 -0.03 47.75 52.59 14.92 16.56
∆d 0.44 10.14 -0.68 0.5299 0.8925 0.14 1.14 14.12 19.13
r 0.15 0.44 0.61
pd 4.78 18.87 0.74
rd 1.47 8.87 0.09

r(20) 1.21 2.41 -0.09

y(20) − i 0.19
rd − i 0.96
Data 1982:Q1 - 2008:Q3
∆c 0.46 0.38 0.43 0.0011 0.0022 -0.13 0.24 0.11 5.96 6.85 0.34 1.31
π 0.67 0.28 0.65 0.0004 0.0005 0.55 -0.15 19.53 45.42 0.93 3.82
i 1.31 0.66 0.95 0.0003 0.0013 -0.02 4.99 82.07 8.74 8.51
∆d 0.77 8.10 -0.74 0.2798 0.6005 0.01 0.00 1.30 0.21
r 0.64 0.56 0.85
pd 4.99 38.23 0.96
rd 2.87 7.44 -0.03

r(20) 2.39 3.51 -0.10

y(20) − i 0.35
rd − i 0.96

* Except for pd (level).
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Table 8: Model Experiments - Changing Policy Parameters
Model moments are computed using the parameters in Table 6, except for the parameters that are changed
in the experiment. “SD” is the standard deviation. “AC” is the first-order autocorrelation. “CVol” is
the conditional volatility. Predictability R2’s correspond to predictive regressions of 20-quarter cumulative
stock and 5-year bond nominal returns, rd and r(20), respectively. Standard deviations and R2’s are reported
as percentage.

(1) (2) (3) (4) (5)
Baseline

Calibration Experiments
iπ = 1.46, iπ = 2.13 iz = −0.5 φπz = −0.44 iπ = 2.95,

iz = −0.35, iz = 1,
Moments φπz = −0.54 φπz = 0.66

SD(∆c) 0.73 0.70 0.68 0.81 0.55
SD(π) 0.55 0.36 0.52 0.51 0.29
SD(i) 0.40 0.32 0.37 0.37 0.36
SD(∆d) 2.87 2.77 2.85 2.93 2.72
SD(r) 0.31 0.29 0.31 0.32 0.28
SD(pd) 14.63 3.84 12.01 18.27 15.96
SD(rd) 4.42 3.09 4.06 5.04 4.16

SD(y(20)) 0.30 0.19 0.27 0.27 0.09

SD(r(20)) 1.28 0.87 1.16 1.15 0.74
AC(π) 0.60 0.56 0.58 0.59 0.50
AC(i) 0.48 0.28 0.42 0.44 0.30
corr(∆c, π) -0.38 -0.20 -0.33 -0.35 0.00
corr(∆c, i) -0.42 -0.33 -0.43 -0.41 0.30
corr(π, i) 0.72 0.63 0.68 0.65 0.73

E[y(20)) − i] 0.18 0.02 0.15 0.19 -0.08
E[rd − i] 0.83 0.09 0.67 1.24 0.87
R2 of rd(0, 20) on ∆c CV ol 1.80 0.41 1.19 2.36 1.10
R2 of rd(0, 20) on π CV ol 1.93 0.19 1.22 2.13 0.44
R2 of rd(0, 20) on i CV ol 2.42 0.53 1.81 3.82 0.74
R2 of rd(0, 20) on ∆d CV ol 0.37 0.08 0.22 0.43 0.06

R2 of r(20)(0, 20) on ∆c CV ol 5.71 8.25 5.10 5.94 6.85

R2 of r(20)(0, 20) on π CV ol 6.97 6.37 6.16 5.89 2.94

R2 of r(20)(0, 20) on i CV ol 9.01 11.65 9.53 11.00 4.84

R2 of r(20)(0, 20) on ∆d CV ol 1.25 0.40 0.92 1.14 0.16
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Table 9: Model Experiments - Changing Shock Parameters
Model moments are computed using the parameters in Table 6, except for the parameters that are changed
in the experiment. “SD” is the standard deviation. “AC” is the first-order autocorrelation. “CVol” is
the conditional volatility. Predictability R2’s correspond to predictive regressions of 20-quarter cumulative
stock and 5-year bond nominal returns, rd and r(20), respectively. Standard deviations and R2’s are reported
as percentage.

(1) (2) (3) (4)

Experiments
φx = 0.99, φu = 0.66, φε = 0.25,

Baseline σ̄x = 2.25 × 10−5, σ̄u = 0.0029, σ̄ε = 0.0034,
Moments Calibration σxv = 0 σuv = 5 σεv = −0.71

SD(∆c) 0.73 0.58 0.71 0.70
SD(π) 0.55 0.54 0.53 0.56
SD(i) 0.40 0.28 0.42 0.39
SD(∆d) 2.87 2.22 2.85 2.91
SD(r) 0.31 0.16 0.31 0.32
SD(pd) 14.63 19.15 17.99 12.30
SD(rd) 4.42 4.56 4.89 4.00

SD(y(20)) 0.30 0.26 0.36 0.27

SD(r(20)) 1.28 1.06 1.50 1.20
AC(π) 0.60 0.63 0.62 0.58
AC(i) 0.48 0.86 0.52 0.39
corr(∆c, π) -0.38 -0.40 -0.33 -0.34
corr(∆c, i) -0.42 -0.36 -0.40 -0.28
corr(π, i) 0.72 0.79 0.75 0.76

E[y(20)) − i] 0.18 0.19 0.23 0.16
E[rd − i] 0.83 1.33 1.12 0.88
R2 of rd(0, 20) on ∆c CV ol 1.80 1.42 2.69 0.56
R2 of rd(0, 20) on π CV ol 1.93 5.64 2.80 1.28
R2 of rd(0, 20) on i CV ol 2.42 6.11 2.97 1.69
R2 of rd(0, 20) on ∆d CV ol 0.37 0.09 0.60 0.17

R2 of r(20)(0, 20) on ∆c CV ol 5.71 2.91 6.55 2.40

R2 of r(20)(0, 20) on π CV ol 6.97 11.38 7.44 6.34

R2 of r(20)(0, 20) on i CV ol 9.01 12.30 8.46 8.83

R2 of r(20)(0, 20) on ∆d CV ol 1.25 0.13 1.59 0.54
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Table 10: Model Experiments - Changing Shock Parameters and ıπ
Model moments are computed using the parameters in Table 6, except for the parameters that are changed
in the experiment. “SD” is the standard deviation. “AC” is the first-order autocorrelation. “CVol” is
the conditional volatility. Predictability R2’s correspond to predictive regressions of 20-quarter cumulative
stock and 5-year bond nominal returns, rd and r(20), respectively. Standard deviations and R2’s are reported
as percentage.

(1) (2) (3) (4)

Experiments
φx = 0.92, φu = 0.77, φε = 0.28,

Baseline σ̄x = 0.0007, σ̄u = 0.0029, σ̄ε = 0.003,
Moments Calibration σxv = 0.01 σuv = 5 σεv = −0.93

SD(∆c) 0.73 0.58 0.69 0.65
SD(π) 0.55 0.45 0.58 0.46
SD(i) 0.40 0.30 0.47 0.37
SD(∆d) 2.87 2.26 2.82 2.86
SD(r) 0.31 0.16 0.30 0.31
SD(pd) 14.63 16.98 20.27 5.87
SD(rd) 4.42 4.86 5.36 3.20

SD(y(20)) 0.30 0.21 0.45 0.25

SD(r(20)) 1.28 1.16 1.98 1.11
AC(π) 0.60 0.64 0.73 0.57
AC(i) 0.48 0.88 0.59 0.36
corr(∆c, π) -0.38 -0.21 -0.27 -0.27
corr(∆c, i) -0.42 -0.06 -0.39 -0.20
corr(π, i) 0.72 0.72 0.83 0.73

E[y(20)) − i] 0.18 -0.02 0.27 0.06
E[rd − i] 0.83 1.15 1.11 0.33
R2 of rd(0, 20) on ∆c CV ol 1.80 1.23 3.81 0.43
R2 of rd(0, 20) on π CV ol 1.93 2.49 3.35 0.33
R2 of rd(0, 20) on i CV ol 2.42 1.87 1.39 0.70
R2 of rd(0, 20) on ∆d CV ol 0.37 0.07 0.55 0.10

R2 of r(20)(0, 20) on ∆c CV ol 5.71 3.37 9.05 5.04

R2 of r(20)(0, 20) on π CV ol 6.97 7.51 8.95 5.37

R2 of r(20)(0, 20) on i CV ol 9.01 5.74 4.25 10.48

R2 of r(20)(0, 20) on ∆d CV ol 1.25 0.10 1.46 0.49
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Table 11: Cost-Push Shocks in the Data
First-order autoregressive coefficients and mean conditional volatilities of cost-push shocks estimated in the
data. The estimation equation is taken from the theoretical model such that:

πt = aπ + φπz∆zt + βπEt[πt+1] + εt,

where π is inflation, ∆zt is the growth rate of the output gap, Et[πt+1] is the inflation expectation at time t,
and εt is the cost push shock. Inflation expectations are the one-period ahead fitted values of inflation from
the benchmark 10-element VAR(4) used in the empirical analysis. Conditional volatilities of the cost-push
shocks are calculated as absolute or squared values of εt. 1982QI is the cutoff point for the two subsamples,
consistent with the empirical analysis. The first five observations of the sample are not used due to the 4
lags in the VAR and the one period forecast for inflation expectation. Source: FRED database.

(1) (2)
Early Sample Late Sample

1965QIV to 1981QIV 1982QI to 2008QIII

AR(1) Coefficient of εt 0.0313 0.1295
Mean Conditional Volatility abs(εt) 0.1737 0.1142
Mean Conditional Volatility ε2t 0.0537 0.0227
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Figure 1: Adjusted R2 of univariate predictive regressions for the full sample from 1961QIII
to 2008QIII. The dependent variables are cumulative log equity returns from time t up to
t + 20, or up to 5 years. The regressors are conditional volatilities of the nominal short
rate (i), inflation (π), the output gap (z), and consumption growth (∆c). Each subplot
represents a different construction of conditional volatilities: VAR lags in columns and
residuals transformations in rows. Sources: FRED database and CRSP.
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Figure 2: Adjusted R2 of univariate predictive regressions for the full sample from 1961QIII
to 2008QIII. The dependent variables are cumulative log 5-YTM bond returns from time
t up to t + 20, or up to 5 years. The regressors are conditional volatilities of the nominal
short rate (i), inflation (π), the output gap (z), and consumption growth (∆c). Each
subplot represents a different construction of conditional volatilities: VAR lags in columns
and residuals transformations in rows. Sources: FRED database and Board of Governors
of the Federal Reserve System.
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Figure 3: Time series plot of the four volatility series estimated by the benchmark 10-
element 4-lag VAR, and the residuals are transformed by the GARCH absolute value model.
The conditional volatilities are: consumption growth (∆c), inflation (π), the output gap
(z), and the nominal short rate (i). NBER recession bars are shaded in gray. Source:
FRED database.
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(a) absolute errors (b) squared errors

(c) GARCH absolute errors (d) GARCH squared errors

CUMSUM test for 10 volatilities

1

Figure 4: CUSUM test of volatility series in the full sample from 1961QIII to 2008QIII.
Each subplot from (a) to (d) corresponds to a different measure of volatility by transforming
the residuals from the VAR. The y-axis is labeled from 1961 to 2008, with the red line
denoting 1980. The x-axis represents the ordering of the variables from the VAR. They
are, in order from 1 to 10, log output growth, log consumption growth, log hours growth,
log wage growth, log investment growth, log government spending growth, log government
revenue growth, log inflation, log output gap, and the nominal short rate. Source: FRED
database.
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(a) absolute errors (b) squared errors

(c) GARCH absolute errors (d) GARCH squared errors

CUMSUM test for 10 volatilities of volatilities

1

Figure 5: CUSUM test of the absolute value of volatility series in the full sample from
1961QIII to 2008QIII. Each subplot from (a) to (d) corresponds to a different measure of
volatility by transforming the residuals from the VAR. The y-axis is labeled from 1961 to
2008, with the red line denoting 1980. The x-axis represents the ordering of the variables
from the VAR. They are, in order from 1 to 10, log output growth, log consumption growth,
log hours growth, log wage growth, log investment growth, log government spending growth,
log government revenue growth, log inflation, log output gap, and the nominal short rate.
Source: FRED database.
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Figure 6: Adjusted R2 and t-statistics of predictive regressions for the full sample from
1961QIII to 2008QIII. The dependent variables are cumulative log returns from time t up
to t+ 20, or up to 5 years, for equity (the first and second rows) and nominal bonds (the
third rows). The regressors for equity returns are dividend yield and cay, respectively. The
regressors for bond returns are Cochrane and Piazzesi (2005) forward rates. Macroeconomic
volatilities are not included in the predictive regressions. GMM estimated slope coefficients
and Newey-West standard errors are used in reporting the t-statistics. Sources: CRSP and
Board of Governors of the Federal Reserve System.
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Figure 7: Adjusted R2 and t-statistics of predictive regressions for the early sample from
1961QIII to 1976QIV. The dependent variables are cumulative log returns from time t up
to t+ 20, or up to 5 years, for equity (the first and second rows) and nominal bonds (the
third rows). The regressors for equity returns are dividend yield and cay, respectively. The
regressors for bond returns are Cochrane and Piazzesi (2005) forward rates. Macroeconomic
volatilities are not included in the predictive regressions. GMM estimated slope coefficients
and Newey-West standard errors are used in reporting the t-statistics. Sources: CRSP and
Board of Governors of the Federal Reserve System.
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Figure 8: Adjusted R2 and t-statistics of predictive regressions for the late sample from
1982QI to 2008QIII. The dependent variables are cumulative log returns from time t up
to t+ 20, or up to 5 years, for equity (the first and second rows) and nominal bonds (the
third rows). The regressors for equity returns are dividend yield and cay, respectively. The
regressors for bond returns are Cochrane and Piazzesi (2005) forward rates. Macroeconomic
volatilities are not included in the predictive regressions. GMM estimated slope coefficients
and Newey-West standard errors are used in reporting the t-statistics. Sources: CRSP and
Board of Governors of the Federal Reserve System.
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Figure 9: Adjusted R2 and t-statistics of predictive regressions for the full sample from
1961QIII to 2008QIII. The dependent variables are cumulative log returns from time t
up to t + 20, or up to 5 years, for equity (the first and third rows) and nominal bonds
(the second and fourth rows). The top two rows are univariate regressions in which the
explanatory variables are volatilities of the nominal short rate (i), inflation (π), the output
gap (z), and consumption growth (∆c). The bottom two rows are the same regressions
with added control variables. In the third row, dividend yield and cay are used as controls
for equity returns, while in the fourth row, forward rates are used. GMM estimated slope
coefficients and Newey-West standard errors are used in reporting the t-statistics. Sources:
FRED database, CRSP, and Board of Governors of the Federal Reserve System.
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Figure 10: Adjusted R2 and t-statistics of predictive regressions for the early sample from
1961QIII to 1976QIV. The dependent variables are cumulative log returns from time t
up to t + 20, or up to 5 years, for equity (the first and third rows) and nominal bonds
(the second and fourth rows). The top two rows are univariate regressions in which the
explanatory variables are volatilities of the nominal short rate (i), inflation (π), the output
gap (z), and consumption growth (∆c). The bottom two rows are the same regressions
with added control variables. In the third row, dividend yield and cay are used as controls
for equity returns, while in the fourth row, forward rates are used. GMM estimated slope
coefficients and Newey-West standard errors are used in reporting the t-statistics. Sources:
FRED database, CRSP, and Board of Governors of the Federal Reserve System.
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Figure 11: Adjusted R2 and t-statistics of predictive regressions for the late sample from
1982QI to 2008QIII. The dependent variables are cumulative log returns from time t up to
t+20, or up to 5 years, for equity (the first and third rows) and nominal bonds (the second
and fourth rows). The top two rows are univariate regressions in which the explanatory
variables are volatilities of the nominal short rate (i), inflation (π), the output gap (z),
and consumption growth (∆c). The bottom two rows are the same regressions with added
control variables. In the third row, dividend yield and cay are used as controls for equity
returns, while in the fourth row, forward rates are used. GMM estimated slope coefficients
and Newey-West standard errors are used in reporting the t-statistics. Sources: FRED
database, CRSP, and Board of Governors of the Federal Reserve System.
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Figure 12: t-statistics using bootstrapped standard errors for univariate stock and bond
return predictability regressions with macroeconomic volatility predictors, compared across
sample periods. Sources: FRED database, CRSP, and Board of Governors of the Federal
Reserve System.
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(a) Stock return and consumption growth (b) Stock return and inflation

(c) Stock return and output gap (d) Stock return and fed funds rate

1

Figure 13: Hypothesis testing using unpaired t test and F test of the residuals from the
early and late subsamples. The null hypothesis is the residuals are similar in the two
samples. The predictive regressions are for stock returns on conditional volatilities of, in
order from subplot (a) to (d), consumption growth, inflation, output gap, and Fed funds
rate. The y-axis is the p-value of the test statistic while the x-axis is the return horizon.
Sources: FRED database and CRSP.
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(a) 5Y bond return and consumption
growth

(b) 5Y bond return and inflation

(c) 5Y bond return and output gap (d) 5Y bond return and fed funds rate

tests for 5Y bond and conditional vol

1

Figure 14: Hypothesis testing using unpaired t test and F test of the residuals from the
early and late subsamples. The null hypothesis is the residuals are similar in the two
samples. The predictive regressions are for bond returns on conditional volatilities of, in
order from subplot (a) to (d), consumption growth, inflation, output gap, and Fed funds
rate. The y-axis is the p-value of the test statistic while the x-axis is the return horizon.
Sources: FRED database and Board of Governors of the Federal Reserve System.
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ADDITIONAL MATERIAL

A Dividend Growth and Dividend Yield Predictability

According to Cochrane, return predictability is really not about predicting future returns per
se but rather about factors that drive the right-hand-side variables in the Shiller decomposition,
namely expected returns and expected dividend growth. In terms of variances, variance of dividend
yield is split between future returns and dividend growth:

var(dp) = cov(dpt,

p∑
j=1

ρj−1rt+j)− cov(dpt,

p∑
j=1

ρj−1∆dt+j) + cov(dpt, ρ
pdpt+p), (12)

where dp is log dividend yield, r is returns, ∆d is log dividend growth, and ρ is the scaling
factor. If dividend yields vary at all, it has to come from either the discount rate channel,
cov(dpt,

∑k
j=1 ρ

j−1rt+j), or the cash flow channel, cov(dpt,
∑k
j=1 ρ

j−1∆dt+j), or there is an as-
set bubble if high dividend yield now predicts higher dividend yields in the future.

We have seen how macroeconomic volatilities drive expected returns in the previous section,
now we ask if macroeconomic volatilities can affect future dividend yields and expected cash flows to
understand which terms in equation 12 are functions of stochastic volatilities. We perform the same
full sample and subsample analysis here to discern whether money policy has had any differential
impact on dividend yields and dividend growth. We use predictive regressions similar to equation
1:

dpt+p = αp + βp ∗ SV i,π,x,∆ct + εp,t,

∆dt→t+p = αp + βp ∗ SV i,π,x,∆ct + εp,t,

where ∆dt→t+p is the cumulative dividend growth from time t to time t+p. Figure 15 presents the
regression results in terms of adjusted R2 (left column) and t-statistics (right column) for the full
sample from 1961QIII to 2008QIII. The subplots in the top row are for regressions where dividend
yields are used while the subplots in the bottom row are for regressions where dividend growth are
used.

For dividend yields predictability in the full sample, stochastic volatilities on inflation and the
nominal short term interest rate strongly predict dividend yields both in terms of R2 and t-statistics
across all horizons. The maximal R2 for inflation stochastic volatility is around 40% 18 quarters
out and for interest rate stochastic volatility is around 20% 6 quarters out, both with t-statistics
well above 3. In long-horizon regressions beyond eight quarters, output gap stochastic volatility
becomes highly significant, and its predictive regressions have high R2s. Consumption growth
stochastic volatility, on the other hand, has no explanatory power on future dividend yields for all
horizons. Not only the t-statistics are insignificant, the R2s are all close to zero. Finally, all slope
coefficients in the dividend yield regressions are positive, including the contemporaneous regression
when horizon is zero. This has two implications. First, stock prices are low when monetary
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policy variable volatilities are high. Second, policy variable volatilities generate significant positive
covariances between pdt and pdt+p, potentially leading to asset bubbles.

The bottom two subplots in Figure 15 show the results of the dividend growth predictive
regressions. In general, dividend growth is predictable using macroeconomic stochastic volatilities
only at long horizons beyond three years. Interest rate and output gap stochastic volatilities are the
strongest predictors reaching R2s of 10% and 15%, respectively, with highly significant t-statistics.
However, contrasting the top row of Figure 15 from the bottom row shows that dividend growth
rates are not as predictable as dividend yields. The maximal R2 in the bottom left subplot for
any stochastic volatility series is about 15%. However, consumption growth stochastic volatility
appears to be a better predictor for dividend growth than dividend yields in the long horizon.

Next, we repeat the same dividend yield and dividend growth predictive regressions in the split
samples. Figure 16 summarizes the regression results for the early subsample from 1961QIII to
1976QIV in the same four subplots: adjusted R2 and t-statistics in columns with dividend yield
and dividend growth in rows, in order. For both set of predictive regressions, explanatory power
of the macroeconomic stochastic volatilities are weak. The adjusted R2s reach double digits only
on two occasions for dividend yields and never go above 8% for dividend growth. The top and
bottom subplots in the right column of Figure 16 show that the coefficient loadings on stochas-
tic volatilities are not displaying statistical significance consistently across prediction horizons to
confirm predictability of dividend yields and dividend growth in the early sample.

In the late subsample from 1982QI to 2008QIII, dividend yield predictability is strong while
dividend growth predictability is absent. Figure 17 plots the results. For dividend yields, output
gap stochastic volatility is the dominate predictor reaching a maximal adjsuted R2 of close to 40%.
Inflation stochastic volatility also performs well, particularly in the longer horizon. Consumption
growth and interest rate volatilities do not have predictive power on future dividend yields in the
recent subsample. These observations are borne out by the t-statistics to the right: slope coeffi-
cients on output gap and inflation stochastic volatilities are consistently significant but otherwise
insignificant on consumption growth and interest rate stochastic volatilities. In the bottom row
of Figure 17, we again find that dividend growth is essentially unpredictable using macroeconomic
volatilities in the 1982QI to 2008QIII sample. Reported adjusted R2s from the predictive regres-
sions are poor while none of the estimated coefficients are persistently above the 10% significance
threshold across horizons.

Over time, dividend yields have become more volatile, yet return predictability has gone down.
This combined with the fact that dividend growth is not forecastable, both in the full sample as
well as in the two subsamples, tell us that the bubble condition or the covariance between current
dividend yield and future dividend yields is playing a larger role. This is confirmed in the predictive
regressions as stochastic volatilities on macroeconomic variables, especially the monetary policy
variables, generate large R2s and high t-statistics when future dividend yields are the dependent
variables. This feature of the data is particularly salient in our second subsample after the structural
break in the late 1970s.
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B Model Solution

The model summarized by equations (4)-(9) can be solved by the method of undetermined
coefficients guessing the system of linear equations:

πt = π̄ + πxxt + πuut + πεεt + πvvt,

∆zt = zxxt + zuut + zεεt + zvvt,

pc,t = p̄c + pc,xxt + pc,uut + pc,εεt + pc,vvt,

under the approximation for the return on the wealth portfolio (consumption claim) given by

rc,t+1 = η̄c + ηcpc,t+1 + ∆ct+1 − pc,t,

where ηc = exp(p̄c)
1+exp(p̄c)

, and η̄c = log(1 + exp(p̄c)) − ηcp̄c. The coefficients for the inflation process
are:

πx =
φπzzx

1− βπφx
, πu =

φπzzu
1− βπφu

, πε =
φπzzε + 1

1− βπφε
, πv =

φπzzv
1− βπφv

.

The coefficients for the wealth-consumption ratio are:

pc,x =

(
1− 1

ψ

)
(1 + zxφx)

1− ηcφx
, pc,u =

(
1− 1

ψ

)
zuφu

1− ηcφu
, pc,ε =

(
1− 1

ψ

)
zεφε

1− ηcφε
,

pc,v =

(
1− 1

ψ

)
zvφv + ηcpc,vφv +

1

2
θ

{((
1− 1

ψ

)
zx + ηcpc,x

)2

σxv

+

((
1− 1

ψ

)
zu + ηcpc,u

)2

σuv +

((
1− 1

ψ

)
zε + ηcpc,ε

)2

σεv +

(
1− 1

ψ

)2

σcv

}

p̄c = log β +

(
1− 1

ψ

)
uc + η̄c + ηcp̄c +

1

2
θ

{(
1− 1

ψ

)2

σ̄2
c +

((
1− 1

ψ

)
zx + ηcpc,x

)2

σ̄2
x

+

((
1− 1

ψ

)
zu + ηcpc,u

)2

σ̄2
u +

((
1− 1

ψ

)
zε + ηcpc,ε

)2

σ̄2
ε +

((
1− 1

ψ

)
zv + ηcpc,v

)2

σ̄2
v

}
,

and the coefficients for the process capturing the change in the output gap are:

zx =

1
ψ

(ıπ−φx)φπz
1−βπφx + ız − 1

ψφx
, zu =

−1
(ıπ−φu)φπz

1−βπφu + ız − 1
ψφu

, zε =
− (ıπ−φε)φπz

1−βπφε
(ıπ−φε)φπz

1−βπφε + ız − 1
ψφε

,

zv = −
(

(ıπ−φv)φπz
1−βπφv + ız − 1

ψφv

)−1
{

1
2θ(1− θ)

[ [(
1− 1

ψ

)
zx + ηcpc,x

]2
σxv +[(

1− 1
ψ

)
zu + ηcpc,u

]2
σuv +

[(
1− 1

ψ

)
zε + ηcpc,ε

]2
σεv +

(
1− 1

ψ

)2

σcv

]
+
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1
2

[
(γzx + πx + (1− θ)ηcpc,x)

2
σxv + (γzu + πu + (1− θ)ηcpc,u)

2
σuv +

(γzε + πε + (1− θ)ηcpc,ε)2
σεv + γ2σcv

]}

The log pricing kernel mt,t+1 ≡ logMt,t+1 is

−mt,t+1 = Γ0 + Γxxt + Γuut + Γεεt + Γvvt + λcσc,tεc,t+1 + λxσx,tεx,t+1 + λuσu,tεu,t+1

+ λεσε,tεε,t+1 + λvσv,tεv,t+1,

where

Γ0 = −θ log β + γuc + (1− θ)(η̄c + ηcp̄c − p̄c), Γx =
1

ψ
(1 + zxφx),

Γu =
1

ψ
zuφu, Γε =

1

ψ
zεφε, Γv = γzvφv + (1− θ)(ηcpc,vφv − pc,v),

λc = γ, λx = γzx + (1− θ)ηcpc,x, λu = γzu + (1− θ)ηcpc,u,
λε = γzε + (1− θ)ηcpc,ε, λv = γzv + (1− θ)ηc pc,v.

The aggregate stock (dividend claim) return, is approximated as

logRrd,t+1 =≈ η̄d + ηdpd,t+1 + ∆dt+1 − pd,t,

where ηd = exp(p̄d)
1+exp(p̄d) , and η̄d = log(1 + exp(p̄d))− ηcp̄d. The solution for the price dividend ratio is

pd,t = p̄d + pd,xxt + pd,uut + pd,εεt + pd,vvt,

with coefficients

p̄d = −Γ0 + η̄d + ηdp̄d + µd + 1
2 ((λc − σdc)σ̄c2 + (λx − ηdpd,x)2σ̄x

2 + (λu − ηdpd,u)2σ̄u
2 + (λε −

ηdpd,ε)
2σ̄ε

2 + (λv − ηdpd,v)2σ2
v + σ̄d

2

pd,x =
φdc(1 + zxφx)− Γx

1− ηdφx
, pd,u =

φdczuφu − Γu
1− ηdφu

pd,ε =
φdczεφε − Γε

1− ηdφε

pd,v = −Γv + φdczvφv + ηdpd,vφv + 1
2 ((λc − σdc)σcv + (λx − ηdpd,x)2σxv + (λu − ηdpd,u)2σuv +

(λε − ηdpd,ε)2σε,i + σdv)

The real risk-free rate is

rt = r̄ + rxxt + ruut + rεεt + rvvt,
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where

r̄ = Γ0 −
1

2

(
λ2
c σ̄

2
c + λ2

xσ̄
2
x + λ2

uσ̄
2
u + λ2

ε σ̄
2
ε + λ2

vσ
2
v

)
,

rx = Γx, ru = Γu, rε = Γε,

rv = Γv −
1

2

(
λ2
cσcv + λ2

xσxv + λ2
uσuv + λ2

εσεv
)
.

The equity premium can be computed as

−covt(mt,t+1, rd,t+1) = −covt(mt,t+1, ηdpd,t+1 + ∆dt+1)

= λcσdcσ
2
c,t + λxηdpd,xσ

2
x,t + λuηdpd,uσ

2
u,t

+ λεηdpd,εσ
2
ε,t + λvηdpd,vσ

2
v .

The one-period nominal interest rate is

it = ī+ ixxt + iuut + iεεt + ivvt,

where

ī = Γ0 + π̄ − 1

2

(
λ2
c σ̄

2
c + (λx + πx)2σ̄2

x + (λu + πu)2σ̄2
u + (λε + πε)

2σ̄2
ε + (λv + πv)

2σ2
v

)
,

ix = ix = Γx + πxφx, iu = Γu + πuφu, iε = Γε + πεφε,

iv = Γv + πvφv −
1

2

(
λ2
cσcv + (λx + πx)2σxv + (λu + πu)2σuv + (λε + πε)

2σεv
)
.

Nominal bond yields are given by

y
(n)
t =

1

n
(An + Bx,nxt + Bu,nut + Bε,nεt + Bv,nvt) .

From the recursive bond pricing equation, the coefficients can be found recursively as:

An = An−1 + Γ0 −
1

2
[λ2
c σ̄

2
c + (λx + Bx,n−1)2σ̄2

x + (λu + Bu,n−1)2σ̄2
u

+ (λε + Bε,n−1)2σ̄2
ε + (λv + Bv,n−1)2σ2

v ],

Bx,n = Γx + Bx,n−1φx,

Bu,n = Γu + Bu,n−1φu,

Bε,n = Γε + Bε,n−1φε,

Bv,n = Γv + Bv,n−1φv −
1

2
[λ2
cσcv + (λx + Bx,n−1)2σxv + (λu + Bu,n−1)2σuv

+ (λε + Bε,n−1)2σε,v].
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Figure 15: Adjusted R2 and t-statistics of predictive regressions for the full sample from
1961QIII to 2008QIII. The dependent variables are cumulative dividend yields (top row)
and dividend growth (bottom row) from time t up to t + 20, or up to 5 years, for equity.
The explanatory variables are volatilities of the nominal short rate (i), inflation (π), the
output gap (x), and consumption growth (∆c). Sources: FRED database and CRSP.
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Figure 16: Adjusted R2 and t-statistics of predictive regressions for the early sample from
1961QIII to 1976QIV. The dependent variables are cumulative dividend yields (top row)
and dividend growth (bottom row) from time t up to t + 20, or up to 5 years, for equity.
The explanatory variables are volatilities of the nominal short rate (i), inflation (π), the
output gap (x), and consumption growth (∆c). Sources: FRED database and CRSP.
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Figure 17: Adjusted R2 and t-statistics of predictive regressions for the late sample from
1982QI to 2008QIII. The dependent variables are cumulative dividend yields (top row) and
dividend growth (bottom row) from time t up to t+ 20, or up to 5 years, for equity. The
explanatory variables are volatilities of the nominal short rate (i), inflation (π), the output
gap (x), and consumption growth (∆c). Sources: FRED database and CRSP.
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